首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the transport studies of YBa2Cu3Oy/YxPr1−xBa2Cu3Oy and YBa2Cu3Oy/R1−xMxMnO3 superlattices in magnetic fields in which R=La or Nd, and M=Ca or Sr. The X-ray diffraction of samples shows superlattice structure. The resistive transition in a magnetic field shows thermal activated behavior. The flux pinning is reduced when the coupling strength between YBCO layers is decreased. The angular dependence of the critical current of YBa2Cu3Oy/PrBa2Cu3Oy superlattices reveals the dimensionality of superlattices. The magnetoresistance ratio (MR), |Δρ(H=7 T)−Δρ(H=0)|/Δρ(H=7 T), of YBa2Cu3Oy/R1−xMxMnO3 superlattices is affected by the layer coupling of R1−xMxMnO3 layers. The enhancement of the MR ratio in the tri-layer YBa2Cu3Oy/La0.7M0.3MnO3/YBa2Cu3Oy film in the low temperature regime is significant and has a value of 33650% at T=75 K. We attribute this enhancement of the MR to the ordering of magnetic moment in ferromagnetic layers in magnetic fields. The results are discussed in terms of existing theories.  相似文献   

2.
The influence of thermomagnetic prehistory on the behavior of a resistive transition R(T) in external magnetic fields of polycrystalline YBa2Cu3O7 and Bi1.8Pb0.3Sr1.9Ca2Cu3O x high-temperature supercon-ductors and the Bi1.8Pb0.3Sr1.9Ca2Cu3O x + Ag texture has been investigated. It has been found that, for YBa2Cu3O7, the thermomagnetic prehistory exerts a substantial influence on the dissipation in the subsystem of grain boundaries in magnetic fields up to ~103 Oe, and this effect becomes insignificant in fields higher than ~104 Oe. This behavior has been explained by the influence of magnetic moments of high-temperature superconductor grains on the effective magnetic field in the intergranular medium. For bismuth high-temperature superconductors, no influence of thermomagnetic prehistory on the resistive transition has been observed; however, this effect manifests itself in current-voltage characteristics at high transport current densities. There is also a radical difference in the behavior of isotherms of the magnetoresistance R(H) for the yttrium and bismuth systems. For YBa2Cu3O7, there is a clear separation between the dissipation regimes in the intergranular medium and in grains, which manifests itself even at low transport current densities as a change of sign in the curvature of the dependence R(H). For a texture based on the bismuth high-temperature superconductor, this feature has been observed only at high current densities (comparable to the critical current density at H = 0). This difference in the behavior of magnetoresistive properties of the classical high-temperature superconductor systems under investigation has been explained by relatively low irreversibility fields of the bismuth high-temperature superconductors. In these materials, simultaneous processes of dissipation can occur in an external magnetic field both in the subsystem of grain boundaries between crystallites and in the crystallites themselves.  相似文献   

3.
A setup for measuring cophasal and quadrature components of higher harmonics of an electromotive-force signal of the response of a high-temperature superconductor makes it possible to study nonlinear magnetic properties of superconductors in variable magnetic fields of up to 1 kOe and constant magnetic fields of up to 10 T in the temperature range of 5?C300 K. This setup was used to measure the temperature dependences of the absolute values of the real and imaginary parts of the first and third harmonics of the magnetization of textured Yba2Cu3O7 ? x polycrystalline samples in the temperature range of 77?C220 K at various values of variable and constant magnetic fields. An analysis of resulting data made it possible to reveal the presence of different dynamical modes of the magnetic flux in YBa2Cu3O7 ? x that were dominant in different temperature ranges. The nonlinearity of the magnetization of YBa2Cu3O7 ? x (the appearance of higher harmonics) was observed up to temperatures in the range of T = 103?C112 K, which were substantially higher than the temperature of the transition of this compound to a superconducting state. The observed feature in the magnetization of YBa2Cu3O7 ? x was associated with the emergence of a pseudogap state in this compound.  相似文献   

4.
A model of the critical state of a Josephson medium is developed on the basis of the Sonin theory of averaged Josephson medium. The model is used to explain the experimental data on the differential magnetic susceptibility χd (H) and magnetoresistance R(H) of polycrystalline YBa2Cu3O7?x samples in fields H<100 Oe.  相似文献   

5.
The differential magnetic susceptibility χd(H) of YBa2Cu3O7?x polycrystalline samples is studied experimentally in fields H<150 Oe. The empirical χd(H) dependence is determined. The results are explained on the basis of the critical-state model of a Josephson medium with hypervortices.  相似文献   

6.
Possible positive muon sites in YBa2Cu3O x were determined from the observedμ + hyperfine fields in antiferromagnetically ordered YBa2Cu3O x and GdBa2Cu3O7. After determining theμ + sites, the possibility of anyons or chiral spin ordering in the superconducting YBa2Cu3O7 is discussed. Positive muon implanted in YBa2Cu3O7 feel static magnetic fields of average 1.4G, which are explicable in terms of nuclear magnetic dipolar fields. Non observation of static local magnetic fields of electronic origin (the upper limit is the order of 0.1 G) means that anyons or chiral spin ordering might not exist in superconducting YBa2Cu3O7.  相似文献   

7.
8.
Conductance anomalies at low bias voltages and superconducting currents in Au/YBa2Cu3Ox and Nb/Au/YBa2Cu3Ox heterojunctions in which the c axis of the YBa2Cu3Ox (YBCO) epitaxial film is rotated in the (110) YBCO plane through 11° with respect to the normal to the substrate plane were studied experimentally. The films were prepared by laser deposition onto (7 2 10)-oriented NdGaO3 substrates. The current-voltage characteristics of the heterojunctions exhibit conductance anomalies at low voltages. The behavior of these anomalies is studied at various temperatures and in various magnetic fields. The critical current and Shapiro steps observed in the current-voltage characteristics of Nb/Au/YBa2Cu3Ox were evidence of the Josephson effect in these heterojunctions. The experimental results are analyzed in terms of the model of the arising of bound states caused by Andreev reflection in superconductors with d-type symmetry of the superconducting order parameter.  相似文献   

9.
We have investigated the superconducting properties of Ag/YBa2Cu3O7−x thick multilayers grown by Pulsed Laser Deposition, and found that the artificial pinning centres induced by Ag nanodots lead to a significant increase in critical current, especially in high applied magnetic fields. Transmission Electron Microscopy showed a columnar growth of YBa2Cu3O7−x induced by Ag nanodots, while angle-dependent transport measurements revealed the existence of strong, both isotropic and c-axis correlated, artificial pinning centres.  相似文献   

10.
Low temperature heat-capacity measurements have been performed to study the magnetic ordering in NdBa2Cu3O x and DyBa2Cu3O x . In order to investigate the type of ordering, magnetic fields up to 6 T and hydrostatic pressures up to 4.5 kbar were applied. While for NdBa2Cu3O x and DyBa2Cu3O x both the fully oxidized and the fully oxygen reduced samples display long rang antiferromagnetic ordering, only magnetic short range interaction could be found for samples in an intermediate range of oxygen concentration. For NdBa2Cu3O x , where superexchange is believed to be the dominant magnetic interaction,T N is three times higher in the sample withx=6.26 compared to the one withx=6.98. In contrast,T N of DyBa2Cu3O x is almost oxygen independent as expected for this mainly dipolar interacting system.  相似文献   

11.
A Mössbauer study has been made on57Fe ions substituted into the Cu(1) site of REBa2Cu3?x Fe x O7+δ (RE=Y, Er, Dy, Gd;x=0.15, 0.30). At low temperature, the iron atoms antiferromagnetically order with a transition temperature which is dependent on the Fe concentration. The temperature dependence of the magnetic subspectra representing Fe ions with various local oxygen environments in YBa2Cu3?x Fe x O7+δ and ErBa2Cu3?x Fe x O7+δ fit a 2D-Ising model with a ratio of the anisotropic exchange between the two directions on the order of 0.5–1.0(10?3) for the Y-compounds and on the order of 1 for the Er-compounds. The magnitude of the local dopant magnetization is related to a short-range chemical order which determines the magnetic chain size and defines the correlation lengths. For the Y-compound, the order is quasi-1D with strong intrachain but very weak interchain coupling. For the Er-compounds, the magnetic coupling is Ising 2D. The strong fluctuation behavior expected in low dimensional systems above and belowT N is observed via characteristic relaxation in the Mössbauer linewidth nearT N. For both the Dy- and Gd-compounds, the magnetic order is 3D. The magnitude of the rare-earth magnetic moments appears to affect the character of the magnetic interaction in the Cu(1)-site. However, a Mössbauer effect measurement at155Gd nuclei in GdBa2Cu2.85Fe0.15O7+δ (T N(Fe)~14 K) shows paramagnetic behavior at 4.9 K.  相似文献   

12.
A systematic study of the weak link behaviour for (Cu0.5Tl0.5?xKx)Ba2Ca2Cu3O10?δ (x = 0, 0.25) superconductors samples has been carried out using electrical resistivity and AC-susceptibility techniques. The K-doped (Cu0.5Tl0.5?xKx)Ba2Ca2Cu3O10?δ samples were synthesized by solid-state reaction method. In magnetic susceptibility measurements, the real (χ′) and imaginary (χ″) parts of the magnetic susceptibility of (Cu0.5Tl0.5?xKx)Ba2Ca2Cu3O10?δ (x = 0, 0.25) samples were measured as a function of temperature under various DC-magnetic fields up to 172 Oe. It is observed from these studies that the magnitude of the diamagnetism is substantially enhanced by K-doping. The possible reasons for the enhanced magnitude of diamagnetism have been investigated. It is observed from in-field magnetic measurements that the inter-grain coupling is improved with the K-doping. It is concluded from these studies that potassium atoms appearing at the crystal boundaries enhance inter-grain coupling and pinning mechanism in K-doped (Cu0.5Tl0.25K0.25)Ba2Ca2Cu3O10?δ superconductors.  相似文献   

13.
Experimental studies of the interaction of variable and constant magnetic fields with supercon-ducting YBa2Cu3O7 ? x ceramics are presented. A technique for estimating the minimal noise level of magnetic field sensors based on superconducting yttrium cuprate is suggested. Ways to reach the ultimate sensitivity of such devices are considered.  相似文献   

14.
The irreversibility properties of high-Tc superconductors are of major importance for technological applications. For example, a high irreversibility magnetic field is a more desirable quality for a superconductor [1]. The irreversibility line in the HT plane is constituted by experimental points, which divides the irreversible and reversible behavior of the magnetization. The irreversibility lines for series of La1.5+xBa1.5+xyCayCu3Oz polycrystalline samples with different doping were investigated. The samples were synthesized using the usual solid estate reaction method. Rietveld-type refinement of x-ray diffraction patterns permitted to determine the crystallization of material in a tetragonal structure. Curves of magnetization ZFC–FC for the system La1.5+xBa1.5+xyCayCu3Oz, were measured in magnetic fields of the 10–20,000 Oe, and allowed to obtain the values for the irreversibility and critical temperatures. The data of irreversibility temperature allowed demarcating the irreversibility line, Tirr(H). Two main lines are used for the interpretation of the irreversibility line: one of those which suppose that the vortexes are activated thermally and the other proposes that associated to Tirr a phase transition occurs. The irreversibility line is described by a power law. The obtained results allow concluding that in the system La1.5+xBa1.5+xyCayCu3Oz a characteristic bend of the Almeida–Thouless (AT) tendency is dominant for low fields and a bend Gabay–Toulouse (GT) behavior for high magnetic fields. This feature of the irreversibility line has been reported as a characteristic of granular superconductors and it corroborates the topological effects of vortexes mentioned by several authors 1 and 2.  相似文献   

15.
We study the similitudes and differences between YBa2Cu3?x Fe x Oδ and PrBa2Cu3?x Fe x Oδ systems, using Mössbauer spectroscopy. Both systems, withz=0.04, were studied at several temperatures. The spectra of PrBa2Cu3?x Fe x Oδ showed four asymmetric quadrupole doublets with apparently different line widths, which were fitted with four symmetric superimposed quadrupole doublets with the same line width, but assuming a small (~4–6 kOe) residual magnetic field in the Fe sites, which are mainly the Cu(1) sites of the 1–2–3 structure. On the other hand, the PrBa2Cu3?x Fe x Oδ spectra showed only three asymmetric quadrupole doublets which can be fitted with three superimposed symmetric doublets and a residual magnetic field. In this case, the Fe atoms also occupy the Cu(1) sites of the 1–2–3 structure. The temperature variations of the Mössbauer spectra and their parameters seem to indicate that, in the Pr-system, a structural change takes place between 12 K and 40 K.  相似文献   

16.
MCu2O3 (M=Ca and Co) system has two-leg spin ladder structure similar to that of the prototype SrCu2O3 system except that the rungs are buckled with an angle of 123° and 105° for CaCu2O3 and CoCu2O3 compounds, respectively. We have synthesized powder samples of (Ca1−xCox)Cu2O3 (x=0.00-1.00) by the solid state reaction method and their structural and magnetic properties have been investigated. All the synthesized compounds crystallize in orthorhombic structure with space group Pmmn. Lattice parameters of (Ca1−xCox)Cu2O3 decrease with the increase in Co content. DC magnetic susceptibility χ(T) results of the end products CaCu2O3 and CoCu2O3 show antiferromagnetic transition (TN) at 27 and 215 K, respectively. Co doping into (Ca1−xCox)Cu2O3 enhances its TN systematically with increasing Co concentration. The χ(T) of CoCu2O3 shows a broad transition with the peak temperature around 215 K and it was found to be field independent up to 90 kOe. The ambiguity concerning the transition was ruled out by recording the temperature dependent X-ray diffraction pattern on CoCu2O3 system, which indicated that there is no structural transition in the investigated temperature range of 115-300 K. Further, specific heat measurement on CoCu2O3 confirms the magnetic phase transition by the appearance of a sharp peak at 215 K.  相似文献   

17.
Microwave absorption in the tetragonal singlet paramagnets HoVO4 (zircon structure) and HoBa2Cu3O x (x ≈ 6, layered perovskite structure) is studied and compared in pulsed magnetic fields up to 40 T at low temperatures. These paramagnets are characterized by a singlet-doublet scheme of the low-lying levels of the Ho3+ ion in a crystal field. In a magnetic field directed along the tetragonal axis, HoVO4 exhibits resonance absorption lines at wavelengths of 871, 406, and 305 μm, which correspond to electron transitions between the low-lying levels of the Ho3+ ion in the crystal field. The positions and intensities of these absorption lines in HoVO4 are well described in terms of the crystal-field formalism with the well-known interaction parameters. The absorption spectra of HoBa2Cu3O x at a wavelength of 871 μm exhibit broad resonance absorption lines against the background of strong nonresonance absorption. The effects of low-symmetry (orthorhombic, monoclinic) crystal-field components, the deviation of a magnetic field from a symmetry axis, and various pair interactions on the absorption spectra of the HoVO4 and HoBa2Cu3O x crystals are discussed. Original Russian Text ? Z.A. Kazeĭ, V.V. Snegirev, M. Goaran, L.P. Kozeeva, M.Yu. Kameneva, 2008, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 632–645.  相似文献   

18.
The ferrimagnetic compounds Ca(CuxMn3?x)Mn4O12 of the double distorted perovskites AC3B4O12 family exhibit a rapid increase of the ferromagnetic component in magnetization at partial substitution of square coordinated (Mn3+)C for (Cu2+)C. In the transport properties, this is seen as a change of the semiconducting type of resistivity for the metallic one. The evolution of magnetic properties of Ca(CuxMn3?x)Mn4O12 is driven by strong antiferromagnetic exchange interaction of (Cu2+)C with (Mn3+/Mn4+)B coordinated octahedra. The competing interactions of (Mn3+)C with (Mn3+/Mn4+)B lead to the formation of noncollinear magnetic structures that can be aligned by magnetic fields.  相似文献   

19.
Equilibrium of 1:2:3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (this compound has in the past variously denoted as CLBLCO, CLBCO or CaLaBaCuO) with oxygen was studied for x=0.1 and x=0.4 in the temperature range of 150–950 °C under 1 atm. O2. The main process is the reversible reaction −Cu32+O6.625+0.25O2=−Cu22+Cu3+O7.125 which is completed with the formation of one Cu3+. The enthalpy (in kJ/mol CLBLCO) and entropy (in J(mol CLBLCO)−1K−1) of this reaction were calculated from the temperature dependence of the equilibrium constant. The values are ΔH=−33.1 and ΔS=−29.9 for x=0.1 and ΔH=−49.4 and ΔS=−42.7 for x=0.4.It was found that the equilibrium of ceramic pellet of CLBLCO with oxygen cannot be practically achieved below 300 °C while the equilibrium for powder is achieved even at 200 °C. Low rate of reaction of CLBLCO with oxygen causes the problem in low temperature equilibration. In contrast, diffusion of oxygen ions in the ceramics is observed even at 200 °C. This diffusion proceeds without the change of the oxygen content and may be applied in order to improve the homogeneity of the distribution of oxygen ions.  相似文献   

20.
Phases of the composition Ca1−xyMgxCu2+yO3 have been prepared for the first time. The compounds are isostructural with the known end-members CaCu2O3 and MgCu2O3 showing a two-leg spin-ladder-like connection of copper and oxygen atoms within the Cu2O3-layer. Opposite the spin ladders this layer is folded, which results in a long-range antiferromagnetic ordering of these phases. The Néel temperature can be adapted by variation of x in Ca1−xyMgxCu2+yO3 between 24 and 80 K. Several structural features, which influence the magnetic ordering, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号