首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present paper examines the stream-wise dispersion of suspended fine particles with settling velocities in an oscillatory turbulent shear flow with or without a non-zero mean over a rough-bed surface when the particles are being released from an elevated continuous source. A finite-difference implicit method is employed to solve the unsteady turbulent convective-diffusion equation. A combined scheme of central and four-point upwind differences is used to solve the steady state equation and the Alternating Direction Implicit (ADI) method is adopted for unsteady equation. It is shown how the mixing of settling particles is influenced by the tidal oscillatory current and the corresponding eddy diffusivity when the initial distribution of concentration regarded as a line-source. The vertical concentration profiles of suspended fine particles with settling velocities are presented for different downstream stations for various values of settling velocity and the frequency of the oscillation in tidal flow. For two-dimensional unsteady dispersion equation, the behaviour of iso-concentration lines for different values of settling velocity, frequency of the oscillation, dispersion time and releasing height is studied in terms of the relative importance of convection and eddy diffusion.  相似文献   

2.
We establish in this paper the foundations of a two-field turbulent flow model that includes two turbulent fields. The case of dispersed particles in an incompressible carrier fluid is treated here, but the very presence of these two fields allows for the generalization of the model to the instability-induced turbulent mixing of two materials. This model describes both cases of turbulent mass diffusion and small drag regime, “wave-like” interpenetration of the two components. It also includes the damping of the turbulence due to the presence of the particles. In addition, a theoretical derivation of the drag-induced decay of the large-scale turbulence kinetic energy is proposed as another mechanism specific to turbulent multiphase flow.  相似文献   

3.
This paper treats the numerical analysis of two-phase mist jet flow, which is commonly adopted to cool the solidified shell in the secondary cooling zone of the continuous casting process. Flow structures of the two-phase subsonic jet impinging on a flat plate normal to flow, corresponding to the present cooling situation, are solved on the assumption that particles are perfectly elastically reflected from a surface. Again, the numerical experiments concerning mist flows composed of air and water-droplets are made in a cold model. The flow fields for both gas and particle phases strongly depend upon the particle size. When waterdroplets mixing in the mist are very small, the impinging particles travel very closely to the surface. With increasing particle size, particles are reflected from the surface in a far distance. Therefore, also, the case is analysed where a low velocity annular gas-only flow surrounding a round nozzle co-axially is present so that such idle particles may be pushed back to the surface again. This is considered to result in an improvement of the mist cooling efficiency.  相似文献   

4.
S. Oka 《Rheologica Acta》1973,12(2):224-227
Summary The flow of viscous fluids through a tapered tube is very interesting from the standpoint of blood flow in blood vessels. The taper of the tube is an important factor in the pressure development. In the first place, we have given a brief summary of our theory of the steady convergent flow of non-Newtonian fluids characterized by an arbitrary time-independent flow curve through a slightly tapered tube. Based on our general formula for the flow per unit time, explicit formulae of the pressure gradient are obtained in several cases of non-Newtonian fluids specified by particular flow curves: power law fluid,Bingham body, and the fluid obeyingCassons equation. In all these cases it is shown that the pressure gradient is not constant along the axis but increases with decrease in the radius of the tapered tube. If we neglect quantities of order 2 (: angle of taper), then the pressure gradient increases linearly with the distance along the axis of the tube.With 2 figures  相似文献   

5.
Research on the effect of particle of two-dimensional shear flow   总被引:2,自引:0,他引:2  
IntroductionTurbulentflowladenwithparticlesiscommoninbothnatureandindustry .Themixingdegreeofparticlesinthegas_solidflowissignificanttoindustrialapplications.Therecentresearchesindicatethatthecoherentstructuresexistinthemixinglayer.Croweetal.[1]evaluated…  相似文献   

6.
An experimental investigation of water flow in a T-shaped channel with rectangular cross section (20 × 20 mm inlet ID and 20 × 40 mm outlet ID) has been conducted for a Reynolds number Re range of 56–422, based on inlet diameter. Dynamical conditions and the T-channel geometry of the current study are applicable to the microscale. 2-D planar particle imaging velocimetry (PIV) and laser-induced fluorescence (LIF) were used in multiple locations of the T-channel to investigate local dynamical behaviors. Steady symmetric and asymmetric flow regimes predicted in the literature, which is largely numerical, are experimentally verified. Unsteady flow regimes, which are numerically predicted to occur at higher Re but have not yet been experimentally characterized, are also examined, and real-time LIF results illuminate the evolution of unsteady structure. Experimental data of the present resolution and scope are not presently available for unsteady flow regimes. Time scales are presented for unsteady flow regimes, which are found to exhibit periodic behavior and to occur for Re  ≥ 195. An unsteady symmetrical regime is identified for Re ≥ 350 that is detrimental to mixing. Momentum fields and dynamical behaviors of all flow regimes are characterized in detail, such that published mixing trends may be better understood. Results of all experimental trials were used to construct a regime map. A symmetric topology is found to be dominant for Re from 56 to 116, when flow is steady, and 350 to 422, when flow is characterized by unsteady stagnation-point oscillation in the T-channel junction. Asymmetric flow, which is positively indicated for mixing, is dominant for Re between 142 and 298, and the fluid interface exhibits both steady (two standing vortices) and unsteady (shear-layer type roll-up) behaviors. This result is based on multiple experiments and suggests a practical operating range of 142  ≤ Re ≤ 298 where asymmetric flow is highly likely to experimentally occur. The identification of an upper limit on Re,  beyond which mixing appears negatively impacted by a more symmetrical momentum field, is practically important as pressure drops on the microscale are significant.  相似文献   

7.
 An experimental investigation of the flowfield characteristics of a butterfly valve under periodic flow has been made. The results concern a valve at large angles corresponding to high area contraction ratios (K>0.3). In steady flow, the results show that the flowfield within the valve is conditioned by the internal jet formed in the trailing edge fluid area. For very high area contraction ratios (K>0.65), the equivalent diameter of that fluid area is the preponderant length scale of the flow. In periodic flow, an increase in the length scale of flow instabilities is observed. The reorganization length of the flow is, thus, shorter, producing a marked reduction in valve head-loss. This phenomen is maximum when the excitation frequency is close to the nominal instabilities frequency (found in steady flow). Received: 14 August 1997/Accepted: 8 April 1998  相似文献   

8.
One of the fundamental problems in the theory of chemical reactors is the determination of the number of steady regimes and their stability. The problem of the number of steady regimes has been considered in many studies, for example, in [1–4]. The stability of a steady regime is usually established from an analysis of the behavior of small perturbations. The corresponding linear boundary-value problem for perturbations has been studied mainly in the limiting cases of ideal mixing and ideal displacement. When account was taken of longitudinal mixing, the only criteria obtained were ones which imposed fairly severe restrictions on the parameters [5]. In the present study numerical analysis is used in order to investigate the stability of steady concentration distributions in an isothermal chemical flow reactor with longitudinal mixing in the case of a single chemical reaction. The eigenvalues were obtained for the Sturm-Liouville problem, which fully characterize the stability for several laws of variation of the chemical reaction rate as a function of the concentration. A knowledge of the eigenvalues is essential, for example, in order to construct the stabilization system proposed in [6] for the unsteady regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 179–182, March–April, 1985.  相似文献   

9.
Poiseuille flow and drop circulation in microchannels   总被引:1,自引:0,他引:1  
Microfluidics aims to control precisely the transport of fluids and suspended particles or drops. Two characteristics of such transport in rectangular microchannels are addressed here, as a function of the cross-sectional aspect ratio. First, we highlight a convenient expression for the ratio of the centerline to bulk flow velocities, which is relevant for controlling the flow of suspended or flow-focused objects. Then, using the theory of Nadim and Stone, the droplet circulation fountain-flow pattern in such channels is evaluated explicitly, and implications for interfacial mobility measurements are discussed. For example, when the interface is retarded, part of the fountain reverses direction, thus alleviating stagnation, promoting mixing, and reducing interfacial concentration gradients.  相似文献   

10.
The paths of small inertial particles are computed in a steady Taylor vortex background flow. When buoyancy effects are neglected we find that particles denser than the background fluid tend to a limit orbit in the meridional plane. The difference in settling time and orbit size, with varying Reynolds number of the background flow, is investigated. We also consider the effect of the various forces on the limit orbit of the particle.  相似文献   

11.
陈荣前  聂德明 《力学学报》2017,49(2):257-267
研究颗粒在流体剪切作用下的运动特性是理解和预测颗粒悬浮流流动行为的关键.当流体的惯性不能忽略时,颗粒的运动往往变得非常复杂.本文采用格子Boltzmann方法对中等雷诺数下椭圆颗粒在剪切流中的旋转运动进行了模拟.首先,研究了雷诺数(0Re 170)的影响,结果表明当雷诺数低于临界值时,颗粒以周期性的方式旋转,角速度最小时对应的长轴方向随着雷诺数的增大而逐渐远离水平方向,而且这一倾角与雷诺数呈分段线性关系;当雷诺数大于临界值时,椭圆形颗粒最终保持静止状态,且静止时的转角与雷诺数呈幂函数关系,雷诺数越大,转角越小,椭圆的长轴越远离水平位置.其次,研究了椭圆颗粒的长短轴之比α(1α10)的影响,结果表明颗粒旋转的周期与α呈幂函数关系,α越大,颗粒旋转周期越小.此外,当α超过临界值时,颗粒也在水平位置附近保持静止状态,此时的转角与α也呈幂函数关系,α越大,转角越小.研究还发现,当雷诺数较大时椭圆颗粒在旋转过程中会产生过冲现象.  相似文献   

12.
Unsteady mass transfer in a steady flow field of a laminar forced flow against a rotating disk is analyzed by using a very effective solution method. Rigorous numerical solutions have been obtained for steady and unsteady mass transfer for any relative flow strength of external flow and rotation-induced flow for 0.1 ≤Sc ≤ 10000. Simple but very accurate correlation equations of Sherwood number for both the steady and unsteady mass transfer are proposed.  相似文献   

13.
In this paper, the two-dimensional steady slip flow in microchannels is investigated. Research on micro flow, especially on micro slip flow, is very important for designing and optimizing the micro electromechanical system (MEMS). The Navier-Stokes equations for two-dimensional steady slip flow in microchannels are reduced to a nonlinear third-order differential equation by using similarity solution. The variational iteration method (VIM) is used to solve this nonlinear equation analytically. Comparison of the result obtained by the present method with numerical solution reveals that the accuracy and fast convergence of the new method.  相似文献   

14.
An extensive literature has been devoted (see, for example, [1–3]) to the question of the existence and uniqueness of steady regimes in chemical flow reactors. In the majority of cases, exact solutions to the corresponding problems cannot be obtained because of the nonlinearity of the functions that describe the kinetics of the chemical reactions. Investigations are therefore usually made by either approximate or numerical methods. In the present paper, exact solutions are obtained to a model nonlinear boundary-value problem of the steady distribution of the concentration in a one-dimensional isothermal chemical flow reactor with longitudinal mixing, and the question of the existence and the number of steady regimes is completely investigated in a three-dimensional space of the determining parameters. The function that describes the rate of the chemical reaction is taken to be a function that simulates approximately the dependence of the rate of the autocatalytic reaction on the concentration of the initial reactant.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 177–181, May–June, 1982.  相似文献   

15.
16.
Random‐walk models are a versatile tool for modelling dispersion of both passive and active tracers in turbulent flow. The physical and mathematical foundations of stochastic Lagrangian models of turbulent diffusion have become more and more solid over the years. An important aspect of these types of models that has not received much attention is the behaviour of the particles near boundaries. Often, a simple stochastic, numerical scheme is used. Because turbulent mixing in the vertical direction is much more complicated than in the two horizontal directions, it is in the vertical direction that a simple numerical scheme, such as the Euler scheme, may cause problems. In this paper our main goal is the development of an efficient 3D particle transport model that can be used in stratified flow. For this type of situation the vertical direction is of special interest. First, a closer look is taken at some considerations that should be regarded when choosing a numerical scheme. Specifically schemes are investigated that can be used in the vertical direction, where the diffusion coefficient is varying in that direction. Experiments are performed regarding the accuracy of different numerical schemes in various situations. The behaviour of the particles near an impermeable layer interface is investigated. The stochastic Heun and Runge–Kutta schemes turn out to be very attractive for this type of model. For the simulation of the transport of various physical quantities, such as salinity, heat, silt, oxygen, or bacteria, different types of models are available. In this case we will take a closer look at the modelling of the transport of pollutants from point sources (either instantaneous or continuous transport). For this purpose a 3D particle transport model has been developed that is especially suited for stratified situations such as can be found in estuaries. The main idea is to use a simple numerical scheme for the horizontal directions and a higher‐order method for the vertical direction. The results play an important role in making specific choices for this type of particle transport model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Oscillatory flow occurs in a wide range of areas of engineering importance. Two-way lateral migration of particles was observed in the flow of a steady, laminar, dilute, neutrally-buoyant suspension of rigid particles in a tube. The equilibrium particle-position was dependent on the dimensionless Womersley parameter. Experiments were performed in which the Womersley parameter was varied between 1.12 and 8.0. For low values of the parameter, two-way radial migration was observed as in steady, laminar flow. For higher values of the parameter, two equilibrium positions were observed, together with three particle free layers across the radius of the tube.  相似文献   

18.
To deeply knowledge of the flow behaviors of pulverized coal particles in dense gas–solid two-phase flow, a multi-scale analysis method based on electrostatic sensor array is applied for the multi-scale characterization of flow behaviors of dense gas–solid flow. The experimental results indicate that: for steady flow, with the increment of conveying pressure difference, the individual particles increase and the particle clusters decrease, the individual particle distribution is always inhomogeneous but the particle cluster distribution tends to be more homogeneous over the cross-section of pipe, while the average flow behavior of pulverized coal particles is always in the relatively static state. For unsteady flow, the average flow behavior of pulverized coal particles is dynamic, and the flow behaviors of the multi-scale flow structures over the cross-section of pipe are all significantly inhomogeneous. Moreover, the effect of particle size on flow behavior of pulverized coal is also investigated and validated.  相似文献   

19.
During twin screw granulation (TSG), small particles, which generally have irregular shapes, agglomerate together to form larger granules with improved properties. However, how particle shape impacts the conveying characteristics during TSG is not explored nor well understood. In this study, a graphic processor units (GPUs) enhanced discrete element method (DEM) is adopted to examine the effect of particle shape on the conveying characteristics in a full scale twin screw granulator for the first time. It is found that TSG with spherical particles has the smallest particle retention number, mean residence time, and power consumption; while for TSG with hexagonal prism (Hexp) shaped particles the largest particle retention number is obtained, and TSG with cubic particles requires the highest power consumption. Furthermore, spherical particles exhibit a flow pattern closer to an ideal plug flow, while cubic particles present a flow pattern approaching a perfect mixing. It is demonstrated that the GPU-enhanced DEM is capable of simulating the complex TSG process in a full-scale twin screw granulator with non-spherical particles.  相似文献   

20.
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance. In the process of fluidization, electrostatic interaction between particles will obviously accelerate particle agglomerate formation, which consequently reduces the fluidization performance. Pulsed gas flow injection is an efficient method to enhance particle mixing, thereby weakening the occurrence of particle agglomerate. In this study, the two-dimensional hybrid pulsed fluidized bed is established. The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects. Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition. Results show that in the presence of static electricity, the bubble generation position is lower, which is conducive to the particle flow. Pulsed gas flow can increase the particle velocity and improve the diffusion ability. The bubble generation time is different at different frequencies, and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics. Different gas flow ratios have significant impacts on the particle movement amplitude. When the pulse gas flow accounts for a large ratio, the particle agglomerate tends to be larger. Therefore, in order to improve the fluidization effect, the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号