首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.  相似文献   

2.
While direct laser desorption ionization of soluble polyaniline dried onto metal sample plates results in mass spectra that are similar to previously shown electrospray ionization data of similar samples, laser desorption of unsolubilized solid polyaniline results in major fragmentation of the phenyl rings. Solventless MALDI, a recently developed technique for insoluble or slightly soluble species, involves the use of only solid analyte and matrix during sample preparation. Solventless MALDI of solid polyaniline results in mass spectra that are similar to the direct laser desorption ionization spectra of the soluble oligomers with some larger molecular weight oligomers also being detected. Based on the matrix used, different series of polyaniline with dissimilar end groups are detected. The matrix also affects the percentages of benzenoid and quinoid units in the oligomers. Thus, solventless MALDI appears to be a promising new technique for the mass spectrometric analysis of low solubility, but industrially important, polyanilines.  相似文献   

3.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A robust and sensitive sample preparation method is presented for matrix-assisted laser desorption ionization (MALDI) mass spectrometric analysis of low nanomolar concentrations of proteins containing high amounts of common salts and buffers. This method involves the production of densely packed sub-micrometer matrix crystals by depositing a matrix solution on top of a matrix seed-layer prepared on a MALDI target. A sub-microliter aliquot of analyte solution is then directly added to the top of the matrix crystals to form a thin-layer. alpha-Cyano-4-hydroxycinnamic acid (4-HCCA) is used as matrix and demonstrated to give better performance than other commonly used matrices, such as 2,5-dihydroxybenzoic acid (DHB), 2-(4-hydroxy-phenylazo) benzoic acid (HABA), or sinapinic acid. This three-layer method is shown to be superior to the other MALDI sample preparation methods, particularly for handling low nanomolar protein solutions containing salts and buffers.  相似文献   

5.
In matrix-assisted laser desorption/ionization (MALDI), the true molecular structures of some analytes are not represented by the observed ions due to a redox reaction. In earlier reports, electron transfer from analyte to chemical matrix has been proposed for the oxidation of ferrocene derivatives in MALDI. To address such a redox phenomenon in laser desorption/ionization processes, two ferrocene derivatives, FcCH2CH2Fc and FcCH2NMe2 [Fc:(CsHs)Fe(CsH4)], were analyzed by a matrix-free method, desorption/ionization on porous silicon (DIOS). The oxidized species, Fc+CH2NMe2 and FcCH2CH2Fc+, were detected in the DIOS mass spectra. The results suggested that electron transfer from the analytes to the sample target occurs during the ionization process.  相似文献   

6.
Artifact-free, high-resolution matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectra have been obtained for the labile, single-isomer, tert.-butyldimethylsilyl ether derivatives of alpha-, beta- and gamma-cyclodextrins by optimizing the MALDI sample preparation method. 2,5-Dihydroxybenzoic acid, a 3:1 mixture of 2,5-dihydroxybenzoic acid and 1-hydroxyisoquinoline, and 2,4,6-trihydroxyacetophenone were investigated as MALDI matrices with methanol and acetonitrile as matrix solvents. Partial-to-complete loss of the tert.-butyldimethylsilyl groups was observed when the commonly used 2,5-dihydroxybenzoic acid was the MALDI matrix and/or methanol was the solvent, both with and without trifluoroacetic acid as additive. Loss of the labile tert.-butyldimethylsilyl groups was avoided with 2,4,6-trihydroxyacetophenone as MALDI matrix and acetonitrile as matrix solvent. Good ion intensities were achieved for the (M+Na)+ and (M+K)+ quasimolecular ions in the positive-ion mode. Minor byproducts were observed in some of the samples and the information was used to aid the optimization of the synthetic work.  相似文献   

7.
The use of inorganic species as assisting materials in matrix-assisted laser desorption/ionization (MALDI) analysis is an alternative approach to avoid interfering matrix ions in the low-mass region of the mass spectra. Reports of the application of inorganic species as matrices in MALDI analysis of small molecules are, however, scarce. Nevertheless, titanium dioxide (TiO(2)) powder has been reported to be a promising matrix medium. In this study we further explore the use of TiO(2) as a matrix for the MALDI analysis of low molecular weight compounds. We present results showing that nanosized TiO(2) anatase and TiO(2) rutile perform better as MALDI matrices than a commercial TiO(2) anatase/rutile mixture. Moreover, when using nanosized TiO(2) anatase as a matrix, high-quality mass spectra can be obtained with strong analyte signals and weak or non-existing matrix interference ions. Furthermore, our results show that the phase type plays an important role in the application of TiO(2) as a MALDI matrix.  相似文献   

8.
Matrix-enhanced surface-assisted laser desorption ionization mass spectrometry imaging (ME-SALDI MSI) has been previously demonstrated as a viable approach to improving MS imaging sensitivity. We describe here the employment of ionic matrices to replace conventional MALDI matrices as the coating layer with the aims of reducing analyte redistribution during sample preparation and improving matrix vacuum stability during imaging. In this study, CHCA/ANI (α-cyano-4-hydroxycinnamic acid/aniline) was deposited atop tissue samples through sublimation to eliminate redistribution of analytes of interest on the tissue surface. The resulting film was visually homogeneous under an optical microscope. Excellent vacuum stability of the ionic matrix was quantitatively compared with the conventional matrix. The subsequently improved ionization efficiency of the analytes over traditional MALDI was demonstrated. The benefits of using the ionic matrix in MS imaging were apparent in the analysis of garlic tissue sections in the ME-SALDI MSI mode.  相似文献   

9.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is used as an alternative method for the rapid diagnosis of albuminuria. This technique requires no further sample pretreatment than simply mixing the urine sample with a MALDI matrix and drying under ambient conditions. The resulting MALDI mass spectra reveal albumin ions having charges ranging from +1 to +5. The detection of albumin is possible using any of the three most common MALDI matrices - sinapinic acid (SA), 2,5-dihydroxybenzoic acid (2,5-DHB), or 4-hydroxy-alpha-cyanocinnamic acid (alpha-CHC). Using this analytical approach, the limit of detection for albumin in urine is 10(-6) M, approximately 5 to 10 times lower than that detectable through conventional chemical testing.  相似文献   

10.
In this study various methods of sample preparation and matrices were investigated to determine optimum collection and analysis criteria for fungal analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The fungal samples were applied to the MALDI sample target as untreated, sonicated, or acid/heat treated samples, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution was layered over the dried samples and analyzed by MALDI-MS. Statistical analysis showed that simply using double-stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, and required the least sample handling.  相似文献   

11.
Aerosol matrix-assisted laser desorption ionization (MALDI) with a reflection time-of-flight mass spectrometer was used to study fragmentation of vitamin B12. Six MALDI matrices were used: 2,5-di-hydroxy benzoic acid (gentisic acid), 4-nitroaniline, 3,5-dimethoxy-4-hydroxy cinnamic acid (sinapic acid), 3,4-di-hydroxy cinnamic acid (caffeic acid), trans-4-hydroxy-3-methoxy cinnamic acid (ferulic acid), and α-cyano-4-hydroxy cinnamic acid (4-HCCA). Mass spectra were obtained with a 355-nm pulsed Nd:YAG laser at irradiances between 0. 1 and 5 GW/cm2 (between 3- and 150-mJ pulse energy). Loss of CN was a major product of prompt ion source fragmentation and the ratio of fragmented to intact analyte was found to be strongly dependent on matrix and weakly dependent on laser irradiance. Additionally, free cobalt ions and cobalt ions bound to small methanol clusters were observed in the mass spectra. The cobalt removal from the corrin ring of vitamin B12 results from direct photon absorption by vitamin B12, but is enhanced by the presence of matrix.  相似文献   

12.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

13.
A variety of derivatized fullerenes have been studied by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Of particular emphasis has been the evaluation of a recently introduced solvent-free sample/target preparation method. Solvent-free MALDI is particularly valuable in overcoming adverse solvent-related effects, such as insolubility and/or degradation of the sample. The method was applied to fullerene derivatives susceptible to decomposition under insufficiently "soft" MALDI conditions. Analytes included the hydrofullerene: C(60)H(36), fluorofullerenes: C(60)F(x) where x = 18, 36, 46, 48 and C(70)F(x) where x = 54, 56, methano-bridged amphiphilic ligand adducts to C(60) and the [4 + 2] cycloadduct of tetracene to C(60). The new solvent-free sample preparation is established as an exceedingly valuable addition to the repertoire of preparation protocols within MALDI. The MALDI mass spectra were of very high quality throughout, providing a testimony that "soft" MALDI conditions could be achieved. Using the [4 + 2] cycloadduct of tetracene to C(60) as the model analyte for direct comparison with solvent-based MALDI, the solvent-free approach led to less fragmentation and more abundant analyte ions. Applying solvent-free sample preparation, different matrix compounds have been examined for use in the MALDI of derivatized fullerenes, including sulfur, tetracyanoquinodimethane (TCNQ), 9-nitroanthracene (9-NA) and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2- propenylidene]malononitrile (DCTB). DCTB was confirmed as the best performing matrix, reducing unwanted decomposition and suppression effects.  相似文献   

14.
Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.  相似文献   

15.
The development of reliable sample preparation methods has been critical to the success of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry experiments. Good MALDI sample preparation for polymers involves choosing the solvent system, the matrix, and the ionization agent correctly, and combining them in a manner that will lead to a sample that will produce the desired ions. The vast diversity of chemistry available in industrial polymers has challenged our ability to design reliable sample preparation methods. In the experiments reported here, we show that matrix-enhanced secondary ion mass spectrometry (MESIMS) is an effective analytical technique to explore sample segregation in solid phase MALDI samples. Qualitative comparison of MESIMS and MALDI results for polymer samples prepared with multiple matrices aids our investigation of the solid-phase solubility of a variety of low molecular weight polymer materials. Including the solid-phase solubility with the liquid-phase solubility of the polymer samples and the matrices enables the construction of a relative solubility chart, which shows the best solubility matches between the polymer and matrix materials for MALDI experiments.  相似文献   

16.
A low molecular mass polyester was analyzed by desorption/ionization on porous silicon (DIOS) mass spectrometry. The results were compared with those of matrix-assisted laser desorption ionization (MALDI) mass spectrometry using matrixes of alpha-cyano-4-hydroxycinnamic acid (CHCA) and 10,15,20-tetrakis(pentafluorophenyl)porphyrin (F20TPP). The CHCA matrix was not suitable for characterization of low molecular mass components of the polyester because the matrix-related ions interfered with the component ions. On the other hand, the F20TPP matrix showed no interference because no matrix-related ions appeared below m/z 822. However, the solvent selection for determining optimal conditions of sample preparation was limited, because F20TPP does not dissolve readily in any of the available organic solvents. In the DIOS spectra, the polymer ions were observed at high sensitivity without a contaminating ion. No matrix is needed for DIOS spectra of low molecular mass polyesters, facilitating sample preparation and selectivity of a precursor ion in post-source decay measurements.  相似文献   

17.
Atmospheric pressure (AP) liquid matrices for ultraviolet (UV) matrix-assisted laser desorption/ionization (MALDI) are presented. Doping a known organic chromophore, alpha-cyano-4-hydroxycinnamic acid (CHCA), into liquid media yielded a homogenous sample system with simplified sample preparation, increased sample lifetime, and added utility for APMALDI ion sources. Compared with vacuum situations, AP matrices are not as limited by vapor pressure, so liquid matrix formulations can focus on desorption and ionization versus vacuum stability and source contamination. The parameters studied include chromophore concentration, liquid support variations, and quantitation capability. Chromophore concentration adjustments provided insight into the necessary absorbance for UV-APMALDI and demonstrated the importance of laser penetration depth. Liquid support variations allowed adjustments of sample lifetime and analyte solvents. Extended sample lifetime is beneficial for instrument tuning and source optimization; however, increased liquid viscosity lowers signal intensity. The shot-to-shot reproducibility, as examined with individual ion packets, suggests that the liquid matrix can alleviate some inconsistencies seen with solid MALDI, suggesting a possibility for better quantitation. The measurements for laser penetration depth, solution viscosity, and solvent additives could add to the information on MALDI mechanisms. The liquid matrix offers advantages that complement current MALDI methods.  相似文献   

18.
The applicability of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to the analysis of wax esters (WEs) was investigated. A series of metal salts of 2,5-dihydroxybenzoic acid (DHB) was synthesized and tested as possible matrices. Alkali metal (Li, Na, K, Rb, Cs) and transition metal (Cu, Ag) salts were studied. The matrix properties were evaluated, including solubility in organic solvents, threshold laser power that should be applied for successful desorption/ionization of WEs, the nature of the matrix ions and the mass range occupied by them, and the complexity of the isotope clusters for individual metals. Lithium salt of dihydroxybenzoic acid (LiDHB) performed the best and matrices with purified lithium isotopes ((6)LiDHB or (7)LiDHB) were recommended for WEs. Three sample preparation procedures were compared: (1) mixing the sample and matrix in a glass vial and deposition of the mixture on a MALDI plate (Mix), (2) deposition of sample followed by deposition of matrix (Sa/Ma), and (3) deposition of matrix followed by deposition of sample (Ma/Sa). Morphology of the samples was studied by scanning electron microscopy. The best sample preparation technique was Ma/Sa with the optimum sample to matrix molar ratio 1 : 100. Detection limit was in the low picomolar range. The relative response of WEs decreased with their molecular weight, and minor differences between signals of saturated and monounsaturated WEs were observed. MALDI spectra of WEs showed molecular adducts with lithium [M + Li](+). Fragments observed in postsource decay (PSD) spectra were related to the acidic part of WEs [RCOOH + Li](+) and they were used for structure assignment. MALDI with LiDHB was used for several samples of natural origin, including insect and plant WEs. A good agreement with GC/MS data was achieved. Moreover, MALDI allowed higher WEs to be analyzed, up to 64 carbon atoms in Ginkgo biloba leaves extract.  相似文献   

19.
In a recent paper (Setz, P. D.; Knochenmuss, R. Phys. Chem. A2005, 109, 4030-4037) energy-transfer from excited matrix molecules to fluorescent traps was used to study the role of pooling reactions for the ionization processes in matrix-assisted laser desorption ionization (MALDI) using 2,5-dihydroxybenzoic acid as matrix. Exciton trapping was shown to interfere with matrix ionization. These investigations were extended to analyze the influence of fluorescent traps on both matrix and analyte ions for alpha-cyano-4-hydroxycinnamic acid and further matrices. A strong influence of the fluorescent traps on both matrix and analyte ionization was revealed, depending on the matrix:trap ratio, and manifested itself differently for low and high mass analytes. The observations are rationalized by the intermediate formation of a "hot spot" due to an efficient conversion of electronic excitation energy to vibronic energy within the fluorescent traps. This process favors the desorption and ionization of small vaporizable analytes and compromises the cluster ablation process needed for larger analyte ions.  相似文献   

20.
Gold nanoparticles (AuNPs) have been studied as a potential solid-state matrix for laser desorption/ionization mass spectrometry (LDI-MS) but the efficiency in ionization remains low. In this report, AuNPs are capped by a self-assembled monolayer of cysteamine and modified with α-cyano-4-hydroxycinnanic acid (CHCA) for effective MALDI measurements. CHCA-terminated AuNPs offer marked improvement on peptide ionization compared with citrate-capped or cysteamine-capped AuNPs. The coating also effectively suppresses formation of Au cluster ions and analyte fragment ions, leading to cleaner mass spectra. Addition of glycerol and citric acid to the peptide/AuNPs sample further improves the performance of these AuNPs for LDI-MS analysis. Glycerol appears to enhance the dispersion of AuNPs in sample spots, increasing the sample ionization and shot-to-shot reproducibility, while citric acid serves as an external proton donor, providing high production of protonated analyte ions and reducing fragmentation of peptides on the nanoparticle-based surface. Optimal ratios of citric acid, glycerol, and AuNPs in sample solution have been systematically studied. A more than 10-fold increase for desorption ionization of peptides can be achieved by combining 5% glycerol and 20 mM citric acid with the CHCA-terminated AuNPs. The applicability of the CHCA-AuNPs for LDI-MS analysis of protein digests has also been demonstrated. This work shows the potential of AuNPs for SALDI-MS analysis, and the improvement with chemical functionalization, controlled dispersion, and use of an effective proton donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号