首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
The opacifying power of synthesized polycrystalline TiO2 particles in a cellulose matrix was found experimentally and theoretically to be superior to that of a commercial rutile pigment, depending on crystal structure of the synthesized particles. The crystal structure of the particles was varied by calcination of amorphous titania nanoparticles at different temperatures and was characterized using SEM, TEM, and XRD. Polycrystalline anatase pigments had less opacifying power than commercial rutile, while polycrystalline pigments containing a one-to-one mixture of anatase and rutile had similar opacifying power as the commercial pigment if they have a similar overall particle size. The polycrystalline rutile pigments composed of a linear linkage of several individual rutile crystals gave 6% more opacity than the commercial rutile pigment. Theoretical light scattering calculations using the T-matrix method showed the light scattering efficiency of linearly arranged polycrystalline rutile particles to depend on number and size of crystals composing the particle. It is suggested that the efficiency of rutile pigments can be increased dramatically by controlling both the primary crystal size and the overall particle size. It is believed that the greater than expected light scattering efficiency of the biphasic pigment results from reflection and refraction of light at the grain boundaries between crystals of different phase, which have different refractive indices.  相似文献   

2.
Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (>420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.  相似文献   

3.
Hierarchical‐structured nanotubular silica/titania hybrids incorporated with particle‐size‐controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano‐precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3–16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size‐tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase‐titania‐based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine‐nanostructured rutile phase titania materials to explore potential applications.  相似文献   

4.
A titania layer with ordered nanostructures is expected to be of high photocatalytic activity due mainly to its high specific surface area. In the present work, large-area films with ordered titania nanorods were deposited on titanium substrates through a solution approach. The nanorods, with the phase composition of a mixture of anatase and rutile, grew on top of a condensed anatase interlayer along mainly the rutile [001]-axis. The photocatalytic activity was evaluated by decomposing rhodamine B in water and compared with the general sol-gel derived titania films and a commercial DP-25 titania coating. It is found that the as-deposited titania nanorods exhibited extremely high initial photocatalytic activity but declined to a poor value after the consumption of beneficial oxidative peroxo complexes coordinated to Ti(IV). A subsequent thermal treatment eliminated such complexes but at the same time improved the crystallinity of the titania nanorods. The photocatalytic activity of the thermally treated titania nanorods was stable and significantly higher than that of the sol-gel derived film and commercial DP-25 coating.  相似文献   

5.
利用St觟ber方法合成了平均粒径在800 nm,球形度、单分散性良好的SiO2微球,再将其作为制备核壳结构SiO2@TiO2颗粒的内核。利用钛酸四丁酯水解反应,在SiO2内核上包覆制备了壳厚在30~100 nm的TiO2壳层,TiO2壳层厚度可根据水解反应中钛酸四丁酯的量调控。将制得的SiO2@TiO2核壳结构颗粒在550℃煅烧1 h,氧化钛壳层的晶型转变为锐钛矿相,晶型转变为锐钛矿相的TiO2更适合作为填料应用于近红外反射涂层。本文合成厚度可控SiO2@TiO2微球的方法是一种改进的溶胶凝胶方法,即在溶胶凝胶方法的基础上增加水热合成工艺。另外,本合成方法工艺简单,无表面活性剂或者耦合剂的引入。  相似文献   

6.
A low‐temperature route to directly obtain polymer/titania hybrid films is presented. For this, a custom‐made poly(3‐alkoxy thiophene) was synthesized and used in a sol‐gel process together with an ethylene‐glycol‐modified titanate (EGMT) as a suitable titania precursor. The poly(3‐alkoxy thiophene) was designed to act as the structure‐directing agent for titanium dioxide through selective incorporation of the titania precursor. The nanostructured titania network, embedded in the polymer matrix, is examined with atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. By means of the scattering technique grazing incidence wide‐angle X‐ray scattering (GIWAXS), a high degree of crystallinity of the polymer as well as successful transformation of the precursor into the rutile phase of titania is verified. UV/Vis measurements reveal an absorption behavior around 500 nm which is similar to poly(3‐hexyl thiophene), a commonly used polymer for photoelectronic applications, and in addition, the typical UV absorption behavior of rutile titania is observed.  相似文献   

7.
Nanosized anatase (< or = 10 nm), rutile (< or = 10 nm), and brookite (approximately 70 nm) titania particles have been successfully synthesized via sonication and hydrothermal methods. Gold was deposited with high dispersion onto the surfaces of anatase, rutile, brookite, and commercial titania (P25) supports through a deposition-precipitation (D-P) process. All catalysts were exposed to an identical sequence of treatment and measurements of catalytic CO oxidation activity. The as-synthesized catalysts have high activity with concomitant Au reduction upon exposure to the reactant stream. Mild reduction at 423 K produces comparably high activity catalysts for every support. Deactivation of the four catalysts was observed following a sequence of treatments at temperatures up to 573 K. The brookite-supported gold catalyst sustains the highest catalytic activity after all treatments. XRD and TEM results indicate that the gold particles supported on brookite are smaller than those on the other supports following the reaction and pretreatment sequences.  相似文献   

8.
In this study, polystyrene (PS)/Sudan black B (SDB) latex particles were prepared using a miniemulsion polymerization technique in the presence of methyl isobutyl ketone (MIBK). Effects of the weight ratio of MIBK/styrene (St) and the SDB load on the morphology of latex particles and encapsulation efficiency were studied. It was found that the encapsulation efficiency of SDB with PS increased as the weight ratio of MIBK/St rose. The PS/SDB latex particles have a perfect core-shell structure and as high as more than 90% of encapsulation efficiency at 1:1 of MIBK/St. UV irradiation experiments and dynamic light scattering tests indicated that the obtained PS/SDB latexes exhibited excellent photostability and storage stability.  相似文献   

9.
Manipulation of colloidal systems via optical trapping techniques requires a refractive index mismatch between particles and solvent which leads to strong interparticle van der Waals interactions. Investigation of the behavior of systems without such strong attractive interactions, however, requires the uncoupling of particle refractive index and particle-particle interactions. To accomplish this, the synthesis of core-shell titania/silica particles has been performed. By index matching a silica shell on a titania core using a mixture of toluene and propanol, the van der Waals interactions between particles can be minimized. Due to the mismatch of the refractive index between the solvent and titania core, however, a strong trapping force can be generated, making optical manipulation feasible. In order to confirm that the silica shell was indeed matched, pure silica particles were synthesized by the method of St?ber (1968) and added to the core-shell system. In these mixed systems of core-shell and pure silica particles in silica-index-matching solvents, only the core-shell particles were trappable. Copyright 2000 Academic Press.  相似文献   

10.
In this research, novel 3-(2-pyridyl)propyl methacrylate and 3-(3-pyridyloxy)propyl methacrylate monomers were synthesized and emulsion polymerized on colloidal polystyrene seeds, resulting in core-shell latex systems. The cores and the core-shell particles were characterized by static light scattering and scanning electron microscopy. Transmission electron microscopy was used to study the morphology of the core-shell particles. Monodisperse beads with a regular core-shell internal structure were found. The pyridine-functional shells were loaded with HAuCl4 and irradiated with UV light to reduce the salts to metallic gold. FTIR, UV-Vis, TEM and XPS were employed to monitor the metal loading and reduction processes. Core-shell systems, decorated with gold nanoparticles, were obtained.  相似文献   

11.
微波载银对纳米二氧化钛相变及光催化性能的增效作用   总被引:4,自引:1,他引:3  
用微波法制备系列载Ag纳米TiO2,发现微波载Ag对纳米TiO2的相变和光催化活性具有增效作用。采用X-射线粉末衍射(XRD),透射电镜(TEM),X-射线光电子能谱仪(XPS),激光Raman光谱及漫反射光谱(DRS)方法对比研究纳米TiO2与载Ag纳米TiO2的性质。结果表明,所制得载Ag纳米TiO2是以锐钛矿为主相的混晶,平均粒径约为10 nm,负载Ag促进纳米TiO2中锐钛矿相转化金红石相相变,减小纳米晶尺寸,并使纳米TiO2光响应范围向可见光区移动 6 nm。在低浓度范围,微波法能均匀地将Ag负载于纳米TiO2表面,并以Ag0/Ag+的形式存在,抑制光生电子与光生空穴复合,大大地提高了纳米TiO2光催化活性。在近紫外-可见光照射下,载Ag量为0.05 mol %的纳米TiO2对罗丹明B的光催化降解效果最好。  相似文献   

12.
Preparation and characterization of silver/TiO2 composite hollow spheres   总被引:9,自引:0,他引:9  
Silver-coated poly(methyl acrylic acid) (PSA) core-shell colloid particles were prepared by an in situ chemical reduction method. Crystalline silver/titania composite hollow spheres were obtained by coating the as-prepared PSA/silver particles with an amorphous titania layer and subsequently calcining in Ar atmosphere. SEM and TEM investigation indicated that the size of the as-prepared PSA/silver and PSA/silver/TiO(2) core-shell particles and silver/titania composite hollow particles was fairly uniform and the wall thickness of the hollow spheres was in the range of 40-80 nm. UV-vis absorption spectra were recorded to investigate their optical properties.  相似文献   

13.
Monodisperse titania/polymer core-shell microspheres were prepared by a two-stage reaction with titania as core and poly(ethyleneglycol dimethacrylate) (PEGDMA) as shell, in which the titania cores were synthesized by a sol-gel method and subsequently grafted with 3-trimethoxysilyl methacrylate as the first-stage reaction to incorporate the vinyl groups on the surface of inorganic core. The PEGDMA shell was then encapsulated over the MPS-modified titania core by distillation precipitation polymerization of ethyleneglycol dimethacrylate in neat acetonitrile during the second-stage polymerization via capture of the radicals of EGDMA with the aid of the reactive vinyl groups on the surface of inorganic core without any stabilizer or surfactant. The shell thickness of the core-shell hybrid microspheres was controlled by the feed of EGDMA monomer during the polymerization. The resultant titania particles and core-shell microspheres were studied by transmission electron microscopy, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, and thermogravimetric analysis.  相似文献   

14.
《中国化学会会志》2017,64(8):978-985
Alumina/titania composite aerogels with different titania contents were synthesized by the sol–gel process and supercritical ethanol drying. The structures and morphologies of synthesized aerogels were analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and N2 adsorption–desorption tests. Supercritical ethanol drying induced the crystallization of titania, which prompted the transformation of the structure from pseudoboehmite to γ‐Al2O3 . Reversely, alumina retarded the anatase‐to‐rutile transformation of titania. The content of titania significantly affected the structure and morphology of alumina/titania composite aerogels. A high content of titania (≥40%) resulted in the phase separation of titania particles, which grew to form the anatase phase octahedral particles with well‐developed facets. When the titania content was low, titania particles could be homogeneously dispersed in alumina particles to form spherical clusters with the poor crystallinity. Titania particles were in the anatase phase, and no rutile phase was formed until the temperature rose to 1000°C. In addition, titania addition resulted in a decrease in the specific surface area (SSA) of alumina aerogels because the SSA of titania was lower than that of alumina aerogels.  相似文献   

15.
We report the synthesis of well-dispersed core-shell Au@SiO(2) nanoparticles with minimal extraneous silica particle growth. Agglomeration was suppressed through consecutive exchange of the stabilizing ligands on the gold cores from citrate to L-arginine and finally (3-mercaptopropyl)triethoxysilane. The result was a vitreophilic, stable gold suspension that could be coated with silica in a biphasic mixture through controlled hydrolysis of tetraethoxysilane under L-arginine catalysis. Unwanted condensation of silica particles without gold cores was limited by slowing the transfer across the liquid-liquid interface and reducing the concentration of the L-arginine catalyst. In-situ dynamic light scattering and optical transmission spectroscopy revealed the growth and dispersion states during synthesis. The resulting core-shell particles were characterized via dynamic light scattering, optical spectroscopy, and electron microscopy. Their cores were typically 19 nm in diameter, with a narrow size distribution, and could be coated with a silica shell in multiple steps to yield core-shell particles with diameters up to 40 nm. The approach was sufficiently controllable to allow us to target a shell thickness by choosing appropriate precursor concentrations.  相似文献   

16.
Nanoscaled spherical silica particles were directly coated with the titania nanoparticles by means of a heterogenic coagulation. Silica was prepared by the Stöber method, titania by a hydrolysis–condensation reaction of tetrapropylorthotitanate under acidic conditions. The on-line tracking of the coating process was performed by measuring the change in zeta potential during the gradual addition of a titania sol to the spherical silica particles. Silica particles of various sizes were used to determine the consumption of the titania sol in the dependence upon the particle size. The coated and uncoated particles were characterized by zeta-potential measurements, acoustic attenuation spectroscopy, dynamic light scattering, and scanning electron microscopy.  相似文献   

17.
微乳法制备纳米TiO2 /SiO2的结构及光催化研究   总被引:1,自引:0,他引:1  
Nanosized TiO2 and TiO2/SiO2 particles were prepared by hydrolysis of tetrabutyl titanate (TBOT) and tetraethyl orthosilicate (TEOS) in the TX-100 reverse microemulsion. These particles were characterized by TG-DSC, XRD, FTIR, TEM,N2 adsorption-desorption. Their photocatalytic activity was tested by degradation of methyl orange. The result shows that TiO2/SiO2 nanoparticles are with a monodispersed spherical phase and a uniform size distribution,and TiO2 particles are dispersed on the surface of SiO2. The band for Ti-O-Si vibration in FTIR was observed, the Ti-O-Si bond increased the stability of anatase TiO2, suppressed the phase transformation of titania from anatase to rutile. And due to the addition of SiO2, the average size of titania decreased from 38 nm in pure TiO2 to 5 nm in TiO2/SiO2. It was found, under UV light irradiation, TiO2/SiO2 particles showed higher activity than pure TiO2, and TiO2/SiO2(1/1) particles showed the highest photocatalytic activity on the photocatalytic decomposition of methyl orange, which was influenced by crystal structure, particle size, crystallinity and Surface area Characteristics.  相似文献   

18.
The present contribution presents the single-step preparation and characterization of poly(N-isopropyl acrylamide)-co-polystyrene core-shell microgels with varying polystyrene content. The swelling behavior of the particles is investigated using dynamic light scattering and differs significantly from the swelling behavior of poly(N-isopropyl acrylamide) homopolymer particles. The lower critical solution temperature is found to be shifted to lower temperatures upon increasing the polystyrene content of the particles. The core-shell structure of the particles is revealed by means of small angle neutron scattering (SANS) using the method of contrast variation. Additionally, the formation of mesoscopic crystals of these particles is investigated by means of scanning electron microscopy and also by SANS. The particles seem to have preferable properties with respect to crystallization compared to homopolymer microgels.  相似文献   

19.
A novel and facile way of improving light harvesting in dye-sensitized solar cells was developed. A thin light scattering layer, composed of patches of closely-packed titania nanoparticles of 10–15 nm in size and generated via an electrodeposition of titania onto the titania photo-anode, resulted in a significant increase of the short-circuit current density by 36%, leading to a 52% increase in the light to electricity conversion efficiency. The existence of this denser nanoparticle layer in the top portion of the titania photo-anode layer, although enhancing the light harvesting of the cell, retarded the diffusion of electrolyte. Consequently, an optimum extent of titania deposition was necessary to achieve a maximum improvement in the light to electricity conversion efficiency of the cell.  相似文献   

20.
Haze and extinction are studied for coreshell particles in a matrix near transparency. It is shown that, close to transparency, a core-shell particle behaves optically differently from a nonstructured particle due to the presence of a minimum in the scattering pattern for any particle size. For small particles or domains (<λ/2), this difference is more pronounced. In particular, compositional effects on haze and extinction are studied. It is found that under certain conditions, for the same global composition, strongly optically stratified par-ticles give lower haze than the homogeneously distributed one by one to two orders of magnitude. The same occurs with the extinction coefficient, however the global composition at which this becomes important differs from that corresponding to a minimum haze. The origin of this difference is discussed in the light of the structure of the scattering pattern in each case. This implies that, for a transparent polymer blend with stratified domains, the minimum haze, maximum transmission and the theoretically perfect matching com-positions, are all different. Finally, it is shown that, for small highly optically inhomogeneous core-shell particles, haze goes through an inflection point with increasing particle size, in contrast with the usual monotonically increasing, singly concave, behavior. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号