首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of square root of 2 in both indirect dimensions and is generally applicable to many multidimensional experiments. A carbon-detected HNCO experiment, c-HNCO, without TROSY optimization and sensitivity enhancement is also designed for comparison purposes. Relaxation simulations show that for a protein with a rotational correlation time of 10 ns or larger, the c-TROSY-HNCO experiment displays comparable or higher signal-to-noise (S/N) ratios than the c-HNCO experiment, although the former selects only 1/4 of the initial magnetization relative to the later. The high resolution afforded in the directly detected carbon dimension allows direct measurement of the doublet splitting to extract 1JCalphaC' scalar and 1DCalphaC' residual dipolar couplings. Simulations indicate that the c-TROSY-HNCO experiment offers higher precision (lower uncertainty) compared to the c-HNCO experiment for larger proteins. The experiments are applied to 15N/13C/2H/[Leu,Val]-methyl-protonated IIBMannose, a protein of molecular mass 18.6 kDa with a correlation time of approximately 10 ns at 30 degrees C. The experimental pairwise root-mean-square deviation for the measured 1JCalphaC' couplings obtained from duplicate experiments is 0.77 Hz. By directly measuring the doublet splitting, the experiments described here are expected to be much more tolerant to nonuniform values of 1JCalphaC' (or 1JCalphaC' + 1DCalphaC' for aligned samples) and pulse imperfections due to the smaller number of applied pulses in the "out-and-stay" coherence transfer in the c-HNCO-TROSY experiment relative to conventional 1H-detected "out-and-back" quantitative J correlation experiments. A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of in both indirect dimensions and is generally applicable to many multidimensional experiments.  相似文献   

2.
Solid-state 13C{1H} cross-polarization/magic angle spinning spectroscopy (CP/MAS) has been utilized to extract the molecular structure information of Taxol, which is an anti-tumor therapeutic medicine extracted from the yew bark. The 13C signals have chemical shift values quite consistent with those measured in solution phase, and the overall chemical shift range is over 200 ppm. Notably, most of the 13C resonances of the taxane ring have two clearly resolved spectral components except the resonance peaks of C-15, C-16 and C-17, which are located at the central part of the taxane ring. On the basis of our NMR data, we propose that these doublets originate from two slightly different molecular conformations of the taxane ring and still the central part of the ring remains structurally similar. Furthermore, it is demonstrated that the 13C chemical shift difference deduced from the doublet splittings can serve as a direct measure of the structural difference between the two conformations, which could possibly correlate with the anti-tumor activity of Taxol.  相似文献   

3.
Residual dipolar couplings (RDCs), in combination with molecular order matrix calculations, were used to unambiguously determine the complete relative stereochemistry of an organic compound with five stereocenters. Three simple one-dimensional experiments were utilized for the measurements of (13)C-(1)H, (13)C-(19)F, (19)F-(1)H, and (1)H-(1)H RDCs. The order matrix calculation was performed on each chiral isomer independently. The fits were evaluated by the comparison of the root-mean-square deviation (rmsd) of calculated and measured RDCs. The order tensor simulations based on two different sets of RDC data collected with phage and bicelles are consistent. The resulting stereochemical assignments of the stereocenters obtained from using only RDCs are in perfect agreement with those obtained from the single-crystal X-ray structure. Six RDCs are found to be necessary to run the simulation, and seven are the minimum to get an acceptable result for the investigated compound. It was also shown that (13)C-(1)H and (1)H-(1)H RDCs, which are the easiest to measure, are also the most important and information-rich data for the order matrix calculation. The effect of each RDC on the calculation depends on the location of the corresponding vector in the structure. The direct RDC of a stereocenter is important to the configuration determination, but the configuration of stereocenters devoid of protons can also be obtained from analysis of nearby RDCs.  相似文献   

4.
The (1)H, (19)F and (13)C spectra have been obtained of a sample of peri-difluoronaphthalene dissolved in the nematic liquid crystalline solvent ZLI 1695. The (13)C satellite spectra from the six, single-(13)C isotopomers at natural abundance in both the (1)H and (19)F spectra were identified and analysed to yield a set of residual total, anisotropic spin-spin couplings, T(ij). This was achieved by first obtaining residual (13)C-(19)F and (13)C-(1)H couplings from a proton-encoded, (13)C detected, local field 2D spectrum. The 45 values of T(HH), T(HF) and T(CH) were used to obtain the structure of the molecule, and then to estimate whether there is a significant contribution from the component along the magnetic field, J, of the anisotropic, electron-mediated, spin-spin coupling tensors for (13)C-(19)F and (19)F-(19)F pairs. It is found that there is strong evidence for a significant contribution of J to T(FF) but not for the (13)C-(19)F pairs.  相似文献   

5.
A novel TROSY (transverse relaxation-optimized spectroscopy) element is introduced that exploits cross-correlation effects between (13)C-(13)C dipole-dipole (DD) coupling and (13)C chemical shift anisotropy (CSA) of aromatic ring carbons. Although these (13)C-(13)C effects are smaller than the previously described [(13)C,(1)H]-TROSY effects for aromatic (13)C-(1)H moieties, their constructive use resulted in further transverse relaxation-optimization by up to 15% for the resonances in a 17 kDa protein-DNA complex. As a practical application, two- and three-dimensional versions of the HCN triple resonance experiment for obtaining ribose-base and intrabase correlations in the nucleotides of DNA and RNA (Sklenar, V.; Peterson, R. D.; Rejante, M. R.; Feigon, J. J. Biomol. NMR 1993, 3, 721-727) have been implemented with [(13)C,(1)H]- and [(13)C,(13)C]-TROSY elements to reduce the rate of transverse relaxation during the polarization transfers between ribose (13)C1' and base (15)N1/9 spins, and between (13)C6/8 and N1/9 within the bases. The resulting TROSY-HCN experiment is user-friendly, with a straightforward, robust experimental setup. Compared to the best previous implementations of the HCN experiment, 2-fold and 5-fold sensitivity enhancements have been achieved for ribose-base and intrabase connectivities, respectively, for (13)C,(15)N-labeled nucleotides in structures with molecular weights of 10 and 17 kDa. TROSY-HCN experiments should be applicable also with significantly larger molecular weights. By using modified TROSY-HCN schemes, the origins of the sensitivity gains have been analyzed.  相似文献   

6.
A novel methodology using the order matrix calculation to determine the absolute sign of spin-spin couplings based on the structure of organic compounds is presented. The sign of the residual dipolar coupling (RDC) depends on the sign of corresponding scalar spin-spin coupling constant and the sign of the RDC has a dramatic influence on the order matrix calculation. Therefore, the sign of the spin-spin coupling constant can be obtained by an order matrix calculation through the corresponding RDC. Six types of spin-spin coupling constants, including 2J(H,H), 1J(C,F), 2J(C,F), 3J(C,F), 2J(F,H) and 3J(F,H), were obtained simultaneously. Except for 3J(C,F) where the measured RDCs have very small magnitudes, the signs were determined unambiguously.  相似文献   

7.
Individual transitions of magnetically equivalent spin systems such as methyl groups residing on isotropically tumbling molecules in solution usually cannot be observed as multiplet-split NMR lines. We propose a pair of NMR experiments, 2D [13C,1Halphaalpha]Methyl and [13C,1Hbetabeta]Methyl HSQC, to overcome this limitation and enable direct and selective observation of individual 1H transitions in 13C-labeled methyl spin systems. Immediate applications include quantitative measurements of 1H-1H residual dipolar couplings (RDC) and cross-correlated relaxation between 1H chemical shift anisotropy and 1H-1H dipole-dipole interactions. The use of the experiments for the measurement of RDCs is demonstrated with two proteins, one weakly aligned by means of Pf1 phages and the other using a naturally present paramagnetic heme group.  相似文献   

8.
13C-(1)H residual dipolar couplings (RDC) have been measured for the bases and sugars in the theophylline-binding RNA aptamer, dissolved in filamentous phage medium, and used to investigate the long-range structural and dynamic behavior of the molecule in the solution state. The orientation dependent RDC provide additional restraints to further refine the overall structure of the RNA-theophylline complex, whose long-range order was poorly defined in the NOE-based structural ensemble. Structure refinement using RDC normally assumes that molecular alignment can be characterized by a single tensor and that the molecule is essentially rigid. To address the validity of this assumption for the complex of interest, we have analyzed distinct domains of the RNA molecule separately, so that local structure and alignment tensors experienced by each region are independently determined. Alignment tensors for the stem regions of the molecule were allowed to float freely during a restrained molecular dynamics structure refinement protocol and found to converge to similar magnitudes. During the second stage of the calculation, a single alignment tensor was thus applied for the whole molecule and an average molecular conformation satisfying all experimental data was determined. Semirigid-body molecular dynamics calculations were used to reorient the refined helical regions to a relative orientation consistent with this alignment tensor, allowing determination of the global conformation of the molecule. Simultaneously, the local structure of the theophylline-binding core of the molecule was refined under the influence of this common tensor. The final ensemble has an average pairwise root mean square deviation of 1.50 +/- 0.19 A taken over all heavy atoms, compared to 3.5 +/- 1.1 A for the ensemble determined without residual dipolar coupling. This study illustrates the importance of considering both the local and long-range nature of RDC when applying these restraints to structure refinements of nucleic acids.  相似文献   

9.
The rotational resonance width (R2W) experiment is a constant-time version of the rotational resonance (R2) experiment, in which the magnetization exchange is measured as a function of sample spinning frequency rather than the mixing time. The significant advantage of this experiment over conventional R2 is that both the dipolar coupling and the relaxation parameters can be independently and unambiguously extracted from the magnetization exchange profile. In this paper, we combine R2W with two-dimensional 13C-13C chemical shift correlation spectroscopy and demonstrate the utility of this technique for the site-specific measurement of multiple 13C-13C distances in uniformly labeled solids. The dipolar truncation effects, usually associated with distance measurements in uniformly labeled solids, are considerably attenuated in R2W experiments. Thus, R2W experiments are applicable to uniformly labeled biological systems. To validate this statement, multiple 13C-13C distances (in the range of 3-6 A) were determined in N-acetyl-[U-13C,15N]l-Val-l-Leu with an average precision of +/-0.5 A. Furthermore, the distance constraints extracted using a two-spin model agree well with the X-ray crystallographic data.  相似文献   

10.
A NMR method is described that permits simultaneous measurement of the geminal 2JH1H2 + 2DH1H2 splitting and the sum of the 1JCH1 + 1DCH1 + 1JCH2 + 1DCH2 couplings for methylene groups, where 2DH1H2 and 1DCH are residual dipolar couplings, occurring when molecules are weakly oriented relative to the magnetic field. By suppressing either the upfield or downfield half of the 1H-1H geminal doublet, the experiment yields improved resolution relative to regular two-dimensional 1H-13C correlation spectra, making it applicable to systems of considerable complexity. The method is demonstrated for measurement of all 2DH5'H5' couplings in a 24-nucleotide 13C-enriched RNA stem loop structure, weakly aligned in liquid crystalline Pf1. The method is equally applicable to methylene groups in 13C-labeled proteins and to natural abundance samples of smaller molecules.  相似文献   

11.
13C-only spectroscopy was used to measure multiple residual (13)C-(13)C dipolar couplings (RDCs) in uniformly deuterated and (13)C-labeled proteins. We demonstrate that (13)C-start and (13)C-observe spectra can be routinely used to measure an extensive set of the side-chain residual (13)C-(13)C dipolar couplings upon partial alignment of human ubiquitin in the presence of bacteriophages Pf1. We establish that, among different broadband polarization transfer schemes, the FLOPSY family can be used to exchange magnetization between a J coupled network of spins while largely decoupling dipolar interactions between these spins. An excellent correlation between measured RDCs and the 3D structure of the protein was observed, indicating a potential use of the (13)C-(13)C RDCs in the structure determination of perdeuterated proteins.  相似文献   

12.
报道了盐酸帕罗西汀的分子结构解析方法,利用国产核磁共振波谱仪测试了盐酸帕罗西汀核磁氢谱(^(1)H-NMR)、核磁碳谱(^(13)C-NMR、DEPT 135°)、二维核磁相关谱(^(1)H-^(1)HCOSY、^(13)C-^(1)H HSQC、^(13)C-^(1)H HMBC),实现了盐酸帕罗西汀氢碳的全部归属.  相似文献   

13.
In this report, the use of 13C direct detection has been pursued in 2D experiments (13C-13C COSY, 13C-13C COCAMQ, 13C-13C NOESY) to detect broad lines in nuclear magnetic resonance spectra of paramagnetic metalloproteins. The sample is a monomeric oxidized copper, zinc superoxide dismutase. Thanks to direct detection probeheads, cryogenic technology, and implementation of 13C band-selective homodecoupling, many broadened signals were detected. Proton signals for the same residues escaped detection in 1H and 1H-15N HSQC experiments because of the broadening. Only the 13C signals which experience large contact coupling escaped detection, i.e., the 13C nuclei of the metal coordinated histidines. Otherwise, nuclei as close to copper(II) as 4 A can be detected. Paramagnetic-based restraints can in principle be used for solution structure determination of paramagnetic metalloproteins and in copper(II) proteins in particular. The present study is significant also for the study of large diamagnetic proteins for which proton relaxation makes proton-based spectroscopy not adequate.  相似文献   

14.
(13)C CP/MAS solid-state NMR spectroscopy has been utilized to analyze six steroid compounds, namely testosterone (Tes), hydrocortisone (Cor), trans-dehydroandrosterone (Adr), prednisolone (Prd), prednisone (Pre) and estradiol (Est). Among them, Tes displays a doublet pattern for all residues, whereas Prd, Pre and Est, exhibit exclusively singlets. For Cor and Adr, the (13)C spectra contain both doublet and singlet patterns. The (13)C doublet signal, with splittings of 0.2-1.5 ppm, are ascribed to local differences in the ring conformations associated with polymorphism. We have assigned all of the (13)C resonances to the different residues in these steroid compounds on the basis of solution NMR data. The C-7, C-8, C-10, C-15 and C-16 residues of Tes, Cor and Adr consistently give rise to singlets or doublets with splittings of less than 0.5 ppm, indicating similar local conformations. Accompanying hydration and dehydration processes, a reversible phase transformation between delta- and alpha-crystal forms has been observed in Tes, corresponding to singlet and doublet (13)C patterns, respectively. To further characterize the ring conformations in the alpha-form, we have successfully extracted chemical shift tensor elements for the (13)C doublets. It is demonstrated that (13)C solid-state NMR spectroscopy provides a reliable and sensitive means of characterizing polymorphism in steroids.  相似文献   

15.
Truncation by the presence of many short-range residual dipolar couplings (RDCs) hinders the observation of long-range RDCs in weakly aligned biomacromolecules. Perdeuteration of proteins followed by reprotonation of labile hydrogen positions greatly alleviates this problem. Here we show that for small perdeuterated proteins, a large number (up to 10 in protein G) of long-range RDCs to 13C and 1HN can be observed from individual amide protons. The 1HN <--> 13C RDCs comprise correlations to 13Calpha, 13Cbeta, and 13C' nuclei of the same and the preceding amino acid, as well as 13C' nuclei of hydrogen-bonded amino acids. The accuracy of the coupling constants is very high and defines individual internuclear distances to within few picometers. Deviations between measured RDC values and values predicted from the 1.1 A crystal structure of protein G are mainly found in two surface-exposed loop regions. The deviations show a strong correlation to the B-factor of the crystal structure.  相似文献   

16.
An alternate technique for accurately monitoring the chemical shift in multidimensional NMR experiments using spin-state selective off-resonance decoupling is presented here. By applying off-resonance decoupling on spin S during acquisition of spin I, we scaled the scalar coupling J(I,S) between the spins, and the residual scalar coupling turns out to be a function of the chemical shift of spin S. Thus, the chemical shift information of spin S is indirectly retained, without an additional evolution period and the accompanying polarization transfer elements. The detection of the components of the doublet using spin-state selection enables an accurate measurement of the residual scalar coupling and a precise value for the chemical shift, concomitantly. The spin-state selection further yields two subspectra comprising either one of the two components of the doublet and thereby avoiding the overlap problems that arise from off-resonance decoupling. In general, spin-state selective off-resonance decoupling can be incorporated into any pulse sequence. Here, the concept of spin-state selective off-resonance decoupling is applied to 3D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY experiments, adding the chemical shift of the heavy atom attached to the hydrogen ((13)C or (15)N nuclei) with high resolution resulting in a pseudo-4D. These pseudo-4D heavy-atom resolved [(1)H, (1)H]-NOESY experiments contain chemical shift information comparable to that of 4D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY, but with an increase in chemical shift resolution by 1-2 orders of magnitude.  相似文献   

17.
NMR spin relaxation techniques that utilize relaxation interference phenomena (TROSY) enable chemical exchange processes to be characterized in high-molecular-weight proteins. A TROSY-selected (TS) approach for measuring off-resonance R1rho relaxation in the spin-locked rotating reference frame is developed using three principles: (i) deuteration of nonexchangeable 1H sites to minimize remote dipole-dipole interactions, (ii) selective excitation of the slowly relaxing 15N doublet component to obtain optimal initial conditions, and (iii) selective inversion of one of the 15N doublet components to suppress cross-relaxation during the spin-lock period. The method is validated using [90%-15N, 70%-2H] ubiquitin at 280 K. The TROSY-selected R1rho experiment enables characterization of backbone dynamics on the microsecond time scale in large proteins.  相似文献   

18.
对于80MHZ的核磁共振仪,^13C与^27Al的共振频率差为0.738MHZ。由于^13C核磁共振谱测定时需要较宽的频带,选择合适的参数,用^13C10nm单探头或613C-^1H5mm双探头都可以测得^27Al核磁共振谱。当Al^3+=0.1mol/L时,对于^13C10mm探头灵敏度为42,线宽4。8HZ;对^13C-H5mm双探头,灵敏度为24.8,线宽为3.2HZ。  相似文献   

19.
"Pure by NMR"?     
Integration of a (13)C-(1)H satellite peak of a given (12)C-(1)H parent resonance within a quantitative (1)H NMR spectrum and comparison to the minor component represents a simple protocol for the accurate determination of diastereoisomeric ratios of up to 1000:1 (i.e., 99.8% de).  相似文献   

20.
A comparison of HSQC and HMQC pulse schemes for recording (1)H[bond](13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented. It is shown that HMQC correlation maps can be as much as a factor of 3 more sensitive than their HSQC counterparts and that the sensitivity gains result from a TROSY effect that involves cancellation of intra-methyl dipolar relaxation interactions. (1)H[bond](13)C correlation spectra are recorded on U-[(15)N,(2)H], Ile delta 1-[(13)C,(1)H] samples of (i) malate synthase G, a 723 residue protein, at 37 and 5 degrees C, and of (ii) the protease ClpP, comprising 14 identical subunits, each with 193 residues (305 kDa), at 5 degrees C. The high quality of HMQC spectra obtained in short measuring times strongly suggests that methyl groups will be useful probes of structure and dynamics in supramolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号