首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
These experiments investigated whether perceptual cueing plays a role in the "unmasking" effects which have been observed in forward masking for narrow-band noise maskers and brief signals. The forward masking produced by a 100-Hz-wide noise masker at a level of 60 dB SPL was measured for a 1-kHz sinusoidal signal with a raised-cosine envelope and a duration of 10 ms at the 6-dB-down points, both for the masker alone, and with various components added to the masker (and gated synchronously with the masker). Unmasking was found to occur even for components which were extremely unlikely to produce a significant suppression of the masker: these included a 75-dB SPL 4-kHz sinusoid, a 50-dB SPL 1.4-kHz sinusoid, a noise low-pass filtered at 4 kHz with a spectrum level of 0 dB, and a noise low-pass filtered at 4 kHz with a spectrum level of 20 dB presented in the opposite ear to the masker-plus-signal. It is concluded that perceptual cueing can play a significant role in producing unmasking for brief signals following narrow-band noise maskers, and that it is unwise to interpret the unmasking solely in terms of suppression.  相似文献   

2.
The first part of this paper presents several experiments on signal detection in temporally modulated noise, yielding a general approach toward the concept of comodulation masking release (CMR). Measurements were made on masked thresholds of both long- and short-duration, narrow-band signals presented in a 100% sinusoidally amplitude-modulated (SAM) noise masker (modulation frequency 32 Hz), as a function of masker bandwidth from 1/3 oct up to 13/3 octs, while the masker band was geometrically centered at signal frequency. With the short-duration signals placed in the valley of the masker, a substantial CMR (i.e., a decrease of masked threshold with increasing masker bandwidth) was found, whereas for the long-duration signals CMR was smaller. Furthermore, investigations were carried out to determine whether CMR changes when the bandwidth of the signals, consisting of bandpass impulse responses, is increased. The data indicate that substantial CMR remains even when all masker bands contain a signal component, thus minimizing across-channel differences. This finding is not in line with current models accounting for the CMR phenomenon. The second part of this paper concerns signal detection in spectrally shaped noise. Also investigated was whether release from masking occurs for the detection of a pure-tone signal at a valley or a peak of a simultaneously presented masking noise with a sinusoidally rippled power spectrum, when this masker was preceded and followed by a second noise (temporal flanking burst) with an identical spectral shape as the on-signal noise. Similar to CMR effects for temporal modulations, the data indicate that coshaping masking release (CSMR) occurs when the signal is placed in a valley of the spectral envelope of the masker, whereas no release from masking is found when the signal is placed at a peak of the spectral envelope of the masker. The implications of these experiments for measures of spectral and temporal resolution are discussed.  相似文献   

3.
Narrow-band sound localization related to external ear acoustics.   总被引:3,自引:0,他引:3  
Human subjects localized brief 1/6-oct bandpassed noise bursts that were centered at 6, 8, 10, and 12 kHz. All testing was done under binaural conditions. The horizontal component of subjects' responses was accurate, comparable to that for broadband localization, but the vertical and front/back components exhibited systematic errors. Specifically, responses tended to cluster within restricted ranges that were specific for each center frequency. The directional transfer functions of the subjects' external ears were measured for 360 horizontal and vertical locations. The spectra of the sounds that were present in the subjects' ear canals, the "proximal stimulus" spectra, were computed by combining the spectra of the narrow-band sound sources with the directional transfer functions for particular stimulus locations. Subjects consistently localized sounds to regions within which the associated directional transfer function correlated most closely with the proximal stimulus spectrum. A quantitative model was constructed that successfully predicted subjects' responses based on interaural level difference and spectral cues. A test of the model, using techniques adapted from signal detection theory, indicated that subjects tend to use interaural level difference and spectral shape cues independently, limited only by a slight spatial correlation of the two cues. A testing procedure is described that provides a quantitative comparison of various predictive models of sound localization.  相似文献   

4.
Confusion effects with sinusoidal and narrow-band noise forward maskers   总被引:2,自引:0,他引:2  
In some forward-masking conditions, signal thresholds may be elevated by the listener's inability to distinguish the signal from the preceding masker. In this study, such "confusion" effects are investigated for both sinusoidal and narrow-band noise forward maskers combined with sinusoidal signals of varying duration. Results for the sinusoidal maskers show effects of off-frequency listening for brief signals and possibly small effects of confusion for longer signals. Results for the narrow-band noise maskers show a marked influence of confusion over a wide range of signal durations. This range is in good agreement with that predicted from previous work with "pulsing" maskers [D. Neff, J. Acoust. Soc. Am. 78, 1966-1976 (1985)]. These results suggest that studies using narrow-band noise forward maskers or studies of psychophysical suppression should include direct tests for confusion effects in key conditions.  相似文献   

5.
Lutfi [J. Acoust. Soc. Am. 73, 262-267 (1983)] compared simultaneous masking functions (signal threshold versus masker level) for individual sinusoidal and narrow-band noise maskers, and for those maskers presented in pairs. Lutfi found that the pairs of maskers produced 10-17 dB "excess" masking over that predicted from the linear sum of their individual masking and explained the results in terms of a model in which the effects of the maskers are summed after undergoing independent compressive transformations. This paper describes experiments similar to those of Lutfi, and presents evidence suggesting that Lutfi's results may have been influenced by two factors: (1) combination-product detection, and (2) the use of different detection cues for single maskers and for pairs of maskers. Experiment I showed that when the stimulus conditions were chosen so as to minimize the likelihood of combination-product detection, "excess" masking was only 3-5 dB. Experiment II supported the idea that for a single narrow-band noise masker, subjects make use of the relatively slow envelope fluctuations to enhance performance. When two independent narrow-band noise maskers are added, the effectiveness of this cue is reduced, and between 3 and 9 dB of "excess" masking occurs. When the two noises are derived from the same source, and have correlated envelope fluctuations, no "excess" masking occurs. The results indicate that Lufti's compressive-nonlinearity model clearly fails in some situations.  相似文献   

6.
The purpose of this report is to present new data that provide a novel perspective on temporal masking, different from that found in the classical auditory literature on this topic. Specifically, measurement conditions are presented that minimize rather than maximize temporal spread of masking for a gated (200-ms) narrow-band (405-Hz-wide) noise masker logarithmically centered at 2500 Hz. Masked detection thresholds were measured for brief sinusoids in a two-interval, forced-choice (21FC) task. Detection was measured at each of 43 temporal positions within the signal observation interval for the sinusoidal signal presented either preceding, during, or following the gating of the masker, which was centered temporally within each 500-ms observation interval. Results are presented for three listeners; first, for detection of a 1900-Hz signal across a range of masker component levels (0-70 dB SPL) and, second, for masked detection as a function of signal frequency (fs = 500-5000 Hz) for a fixed masker component level (40 dB SPL). For signals presented off-frequency from the masker, and at low-to-moderate masker levels, the resulting temporal masking functions are characterized by sharp temporal edges. The sharpness of the edges is accentuated by complex patterns of temporal overshoot and undershoot, corresponding with diminished and enhanced detection, respectively, at both masker onset and offset. This information about the onset and offset timing of the gated masker is faithfully represented in the temporal masking functions over the full decade range of signal frequencies (except for fs=2500 Hz presented at the center frequency of the masker). The precise representation of the timing information is remarkable considering that the temporal envelope characteristics of the gated masker are evident in the remote masking response at least two octaves below the frequencies of the masker at a cochlear place where little or no masker activity would be expected. This general enhancement of the temporal edges of the masking response is reminiscent of spectral edge enhancement by lateral suppression/inhibition.  相似文献   

7.
When a signal is higher in frequency than a narrow-band masker, thresholds are lower when the masker envelope fluctuates than when it is constant. This article investigates the cues used to achieve the lower thresholds, and the factors that influence the amount of threshold reduction. In experiment I the masker was either a sinusoid (constant envelope) or a pair of equal-amplitude sinusoids (fluctuating envelope) centered at the same frequency as the single sinusoid (250, 1000, 3000, or 5275 Hz). The signal frequency was 1.8 times the masker frequency. At all center frequencies, thresholds were lower for the two-tone masker than for the sinusoidal masker, but the effect was smaller at the highest and lowest frequencies. The reduced effect at high frequencies is attributed to the loss of a cue related to phase locking in the auditory nerve. The reduced effect at low frequencies can be partly explained by reduced slopes of the growth-of-masking functions. In experiment II the masker was a sinusoid amplitude modulated at an 8-Hz rate. Masker and signal frequencies were the same as for the first experiment. Randomizing the modulation depth between the two halves of a forced-choice trial had no effect on thresholds, indicating that changes in modulation depth are not used as a cue for signal detection. Thresholds in the modulated masker were higher than would be predicted if they were determined only by the masker level at minima in the envelope, and the threshold reduction produced by modulating the master envelope was less at 250 Hz than at higher frequencies. Experiments III and IV reveal two factors that contribute to the reduced release from masking at low frequencies: The rate of increase of masked threshold with decreasing duration is greater at 250 Hz than at 1000 Hz; the amount of forward masking, relative to simultaneous masking, is greater at 250 Hz than at 1000 Hz. The results are discussed in terms of the relative importance of across-channel cues and within-channel cues.  相似文献   

8.
Previous data on the masking level difference (MLD) have suggested that NoSpi detection for a long-duration signal is dominated by signal energy occurring in masker envelope minima. This finding was expanded upon using a brief 500-Hz tonal signal that coincided with either the envelope maximum or minimum of a narrow-band Gaussian noise masker centered at 500 Hz, and data were collected at a range of masker levels. Experiment 1 employed a typical MLD stimulus, consisting of a 30-ms signal and a 50-Hz-wide masker with abrupt spectral edges, and experiment 2 used stimuli generated to eliminate possible spectral cues. Results were quite similar for the two types of stimuli. At the highest masker level the MLD for signals coinciding with masker envelope minima was substantially larger than that for signals coinciding with envelope maxima, a result that was primarily due to decreased NoSpi thresholds in masker minima. For most observers this effect was greatly reduced or eliminated at the lowest masker level. These level effects are broadly consistent with the presence of physiological background noise and with a level-dependent binaural temporal window. Comparison of these results with predictions of a published model suggest that basilar-membrane compression alone does not account for this level effect.  相似文献   

9.
Many underwater bioacoustical recording experiments (e.g., fish sound production during courtship or agonistic encounters) are usually conducted in a controlled laboratory environment of small-sized tanks. The effects of reverberation, resonance, and tank size on the characteristics of sound recorded inside small tanks have never been fully addressed, although these factors are known to influence the recordings. In this work, 5-cycle tone bursts of 1-kHz sound were used as a test signal to investigate the sound recorded in a 170-l rectangular glass tank at various depths and distances from a transducer. The dominant frequency, sound-pressure level, and power spectrum recorded in small tanks were significantly distorted compared to the original tone bursts. Due to resonance, the dominant frequency varied with water depth, and power spectrum level of the projected frequency decreased exponentially with increased distance between the hydrophone and the sound source; however, the resonant component was nearly uniform throughout the tank. Based on the empirical findings and theoretical calculation, a working protocol is presented that minimizes distortion in fish sound recordings in small tanks. To validate this approach, sounds produced by the croaking gourami (Trichopsis vittata) during staged agonistic encounters were recorded according to the proposed protocol in an 1800-l circular tank and in a 37-l rectangular tank to compare differences in acoustic characteristics associated with tank size and recording position. The findings underscore pitfalls associated with recording fish sounds in small tanks. Herein, an empirical solution to correct these distortions is provided.  相似文献   

10.
North Atlantic right whales (Eubalaena glacialis) produce a loud, broadband signal referred to as the gunshot sound. These distinctive sounds may be suitable for passive acoustic monitoring and detection of right whales; however, little is known about the prevalence of these sounds in important right whale habitats, such as the Bay of Fundy. This study investigates the timing and distribution of gunshot sound production on the summer feeding grounds using an array of five marine acoustic recording units deployed in the Bay of Fundy, Canada in mid-summer 2004 and 2005. Gunshot sounds were common, detected on 37 of 38 recording days. Stereotyped gunshot bouts averaged 1.5 h, with some bouts exceeding 7 h in duration with up to seven individuals producing gunshots at any one time. Bouts were more commonly detected in the late afternoon and evening than during the morning hours. Locations of gunshots in bouts indicated that whales producing the sounds were either stationary or showed directional travel, suggesting gunshots have different communication functions depending on behavioral context. These results indicate that gunshots are a common right whale sound produced during the summer months and are an important component in the acoustic communication system of this endangered species.  相似文献   

11.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

12.
This study examined whether increasing the similarity between informational maskers and signals would increase the amount of masking obtained in a nonspeech pattern identification task. The signals were contiguous sequences of pure-tone bursts arranged in six narrow-band spectro-temporal patterns. The informational maskers were sequences of multitone bursts played synchronously with the signal tones. The listener's task was to identify the patterns in a 1-interval 6-alternative forced-choice procedure. Three types of multitone maskers were generated according to different randomization rules. For the least signal-like informational masker, the components in each multitone burst were chosen at random within the frequency range of 200-6500 Hz, excluding a "protected region" around the signal frequencies. For the intermediate masker, the frequency components in the first burst were chosen quasirandomly, but the components in successive bursts were constrained to fall in narrow frequency bands around the frequencies of the components in the initial burst. Within the narrow bands the frequencies were randomized. This masker was considered to be more similar to the signal patterns because it consisted of a set of narrow-band sequences any one of which might be mistaken for a signal pattern. The most signal-like masker was similar to the intermediate masker in that it consisted of a set of synchronously played narrow-band sequences, but the variation in frequency within each sequence was sinusoidal, completing roughly one period in a sequence. This masker consisted of discernible patterns but not patterns that were part of the set of signals. In addition, masking produced by Gaussian noise bursts--thought to produce primarily peripherally based "energetic masking"--was measured and compared to the informational masking results. For the three informational maskers, more masking was produced by the maskers comprised of narrow-band sequences than for the masker in which the frequencies were not constrained to narrow bands. Also, the slopes of the performance-level functions for the three informational maskers were much shallower than for the Gaussian noise masker or for no masker. The findings provided qualified support for the hypothesis that increasing the similarity between signals and maskers, or parts of the maskers, causes greater informational masking. However, it is also possible that the greater masking was a consequence of increasing the number of perceptual "streams" that had to be evaluated by the listener.  相似文献   

13.
张叔英 《物理学报》1976,25(3):235-245
本文从声信号检测的观点出发分析了时间压缩相关器的有关理论问题。结合处理常用的线性调频脉冲信号及拟随机信号的情况,在相关器的输出信号及其频谱结构、多普勒滤波器组的设置、噪声背景及信噪比增益、信号包络的平滑化等方面得到了一些有用的结论和基本计算公式。改进和部分修正了已有的设计理论,为合理地设计近代声信号脉冲压缩接收机提供了依据。  相似文献   

14.
We compare psychophysical tuning curves obtained with sinusoidal and narrow-band (50-Hz wide) noise maskers in both simultaneous and forward masking. In one experiment, we examine the effects of different combinations of duration and intensity of the 1-kHz sinusoidal signal. In a second experiment, we compare tuning curves obtained with a sinusoidal signal to those obtained with a noise signal. In both experiments, a narrow-band noise is a more effective simultaneous masker than a sinusoid for masker frequencies near the signal frequency. We argue that this is probably due to the use of different detection cues in the presence of sinusoidal and noise maskers, and that the greater masking produced by the noise is not simply due to its greater variability. As observed in other studies, tuning curves are narrower in forward masking than in simultaneous masking.  相似文献   

15.
Optimum data windows make it possible to determine accurately the amplitude, phase, and frequency of one or more tones (sinusoidal components) in a signal. Procedures presented in this paper can be applied to noisy signals, signals having moderate nonstationarity, and tones close in frequency. They are relevant to many areas of acoustics where sounds are quasistationary. Among these are acoustic probes transmitted through media and natural sounds, such as animal vocalization, speech, and music. The paper includes criteria for multitone FFT block design and an example of application to sound transmission in the atmosphere.  相似文献   

16.
The propagation of a noise signal is considered for an arctic-type waveguide with a varying sound speed profile. The profiles used in the calculations differ from each other due to different depth dependences of salinity. The shape of the envelope of the time correlation function is studied for the coherent and reference signals. For the latter, either the replica of the transmitted noise signal or one of the modes propagating in the waveguide is used. A characteristic feature of the proposed technique is the use of the time cross-correlation between the signals that traveled through the same path in the presence of different sound speed profiles. In this case, from the shape of the envelope of the signal correlation function, one can estimate the changes that occur in the sound speed profile on the path of signal propagation.  相似文献   

17.
Detection thresholds were determined for signals consisting of one, two, or five noise bands embedded in eight "cue" bands. All of the noise bands were 100 Hz wide. The center frequencies of the signal bands ranged from 1250-3250 Hz in 500-Hz steps, and those of the cue bands ranged from 500-4000 Hz in 500-Hz steps. The multiple-band signals either all had the same temporal envelope, or all had different temporal envelopes. Similarly, the cue bands either all had the same temporal envelope or all had different temporal envelopes. In separate listening conditions, signal thresholds were determined for various combinations of the temporal envelope patterns of the signal and cue bands. The results were analyzed both in terms of differences in threshold across listening conditions, and in terms of changes in threshold within a listening condition, as the number of signal bands was increased. For both the single- and multiple-band signals, performance was best when the signal band(s) had a different envelope from the common envelope of the cue bands, and performance was worst when either the cue bands all had different envelopes, or the signal and cue bands all shared the same envelope. The thresholds of the multiple-band signals were better fitted by an independent-thresholds model than by a statistical-summation model. However, neither model predicted thresholds uniformly well in all listening conditions. The results are discussed in terms of both "within-channel" and "across-channel" models.  相似文献   

18.
曾淼  沈勇  黎付  杨增涛  王华 《声学学报》2017,42(1):103-108
探索一种简便的聚焦超声功率测量方法,利用压电陶瓷片直接接收超声信号,通过机电类比得到压电瞬态响应由压电片在声波作用力下引起受迫振动产生的电压响应与固有振动产生的高频衰减响应叠加而成,分析输出压电信号与换能器声功率之间的换算关系。对输出压电信号进行二次包络提取,获得表征声功率变化的电压幅度曲线,分别找出不同换能器驱动电压下包络曲线的最大峰值电压,将其平方值与声功率计所测声功率进行线性拟合,并对理论关系式中的比例系数进行标定。实验结果所得线性拟合度较高,且标定后所得声功率与声功率计所测值相对误差低于8.7%,证明了通过压电瞬态响应测量换能器声功率具有可行性。   相似文献   

19.
When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed "electromotile hearing." Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, guinea pigs were tested in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, it is concluded that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broadband or noisy) sound at a frequency of 8 kHz or above.  相似文献   

20.
In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations enforce also birdsong in forests. Song elements have to be long enough to be superimposed by reflections and therefore longer signals should be louder than shorter ones. An analysis of the influence of signal length on pure tones and on song elements of two sympatric rainforest thrush species demonstrates that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations in relation to direct sound should favor the use of longer signals for better propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号