首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this research, a new strategy for construction of a development potentiometric carbon paste Zn2+-ion selective electrode based on a novel nano-sensing layer is suggested. The proposed nano-sensing layer was prepared with the addition of a synthesised Zn2+-ion imprinted polymer nanoparticles ‘as an efficient sensing agent’ into the carbon paste matrix consisting of graphite powder, nanographene-composite ‘graphene nanosheets decorated with silver nanoparticles’ and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ‘ an ionic liquid ’, as the conducting binder. Under the optimised experimental conditions, the suggested nanographene-composite potentiometric sensor presented a low detection limit of 1.93 × 10?1 μg L?1 and a linear analytical range from 2.62 × 10?1 to 6.54 × 105 μg L?1 with an excellent Nernstian slope of 29.80 mV decade?1. The proposed zinc selective sensor was successfully applied for the highly sensitive determination of trace amounts of Zn2+ in environmental and biological samples with satisfactory results.  相似文献   

2.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with Titan yellow dye (PPy/TY) was prepared for potentiometric determination of magnesium ion in aqueous solutions. The structural characteristics of magnesium sensor electrode (PGE/PPy/TYMg) were studied using scanning electron microscopy and Fourier transform infrared along with energy-dispersive spectroscopy. Under the optimal conditions, the electrode reveals a good Nernstian behavior with slope of 28.27 ± 0.40 mV per decade over the concentration range of 1.0 × 10?5–5.0 × 10?2 M and a detection limit of 6.28 × 10?6 M. The potentiometric response of fabricated electrode toward magnesium ion was found to be independent of the pH of the test solution in the pH range of 4.5–8.0. The electrode showed fast response time (<10 s) and good shelf lifetime (>2 months). The prepared magnesium sensor electrode can also be used as an indicator electrode in potentiometric titration of Mg2+ with EDTA with distinguished end point. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced magnesium electrode was used for measurement of Mg2+ ion in real samples without any serious interferences from other ions.  相似文献   

3.
A macrocyclic ligand “7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione” as an efficient ionophore was used into a new Cu2+ nano-composite potentiometric carbon paste sensor containing multi-walled carbon nanotubes (MWCNTs), nanosilica particles, and room temperature ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP]Tf2N). This potentiometric sensor responds to copper ions in a wide linear dynamic range of 4.50 × 10?8 to 1.00 × 10?2 mol L?1 with Nernstian slope of 29.64 ± 0.10 mV per decade. The detection limit of 2.34 × 10?8 mol L?1 was obtained at the pH range 3.5–6.0. It has a fast response with response time of about 10 s, and can be used for at least 16 weeks without any considerable divergence in the potentials. The suggested sensor thus allows sensitive, selective, simple, low cost, and stable electrochemical sensing of Cu2+ ions in the presence of a large number of alkali, alkaline earth, transition and heavy metal ions. This sensor was successfully applied in the determination of copper ions in water and waste water samples.  相似文献   

4.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with uranyl zinc acetate (termed PGE/PPy/U) have been prepared for potentiometric determination of uranyl in aqueous solutions. Electropolymerization reaction for preparing of U(VI) sensor electrode was carried via applying a constant current of 1.0 mA on PGA working electrode in a solution containing 8.0 mM pyrrole and 0.8 mM ZnUO2(CH3COO)4 salt. The constructed electrode displayed a linear and near Nernstian response (22.60 ± 0.40 mV/decade) to U(VI) ions in the concentration range of 1.0 × 10?6–1.0 × 10?2 M. A detection limit of 6.30 × 10?7 M and a fast response time (≤12 s) was observed during measurements. The working pH range of the electrode was 4.0–8.0 and lifetime of the sensor was at least 60 days. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced uranyl electrode was used for measurement of U(VI) ion in real samples without any serious inferences from other ions.  相似文献   

5.
Kalaycı S  Somer G  Ekmekci G 《Talanta》2005,65(1):87-91
An electrode for glucose has been prepared by using an iodide selective electrode with the glucose oxidase enzyme. The iodide selective electrode used was prepared from 10% TDMAI and PVC according our previous study. The enzyme was immobilized on the iodide electrode by holding it at pH 7 phosphate buffer for 10 min at room temperature. The H2O2 formed from the reaction of glucose was determined from the decrease of iodide concentration that was present in the reaction cell. The iodide concentration was followed from the change of potential of iodide selective electrode. The potential change was linear in the 4×10−4 to 4×10−3 M glucose concentration (75-650 mg glucose/100ml blood) range. The slope of the linear portion was about 79 mV per decade change in glucose concentration. Glucose contents of some blood samples were determined with the new electrode and consistency was obtained with a colorimetric method. The effects of pH, iodide concentration, the amount of enzyme immobilized and the operating temperature were studied. No interference of ascorbic acid, uric acid, iron(III) and Cu(II) was observed. Since the iodide electrode used was not an AgI-Ag2S electrode, there was no interference of common ions such as chloride present in biological fluids. The slope of the electrode did not change for about 65 days when used 3 times a day.  相似文献   

6.
Atta NF  Galal A  Mark HB  Yu T  Bishop PL 《Talanta》1998,47(4):987-999
A new potentiometric sensor electrode for sulfide based on conducting polymer films is introduced. The electrode is formed by electrochemically depositing a film of poly(3-methylthiophene) and poly(dibenzo-18-crown-6) onto an alloy substrate. Different methods were used for the electrode preparations. The alloy used has a low melting point, which allowed its use for manufacturing a microsize version of this electrode. The electrode response is stable for 3 days. The working temperature range for this electrode is between 10 and 40 degrees C. The linear dynamic range is 1.0x10(-7)-1.0x10(-2) M and measures total sulfide concentration over a range of pH from 1 to 13. The polymer electrode showed high selectivity for sulfide in the presence of many common interfering anions. The electrode is useful for the measurement of total sulfide in biological environments and can be manufactured in the micron scale. Therefore, it will be useful for the measurement within biofilms.  相似文献   

7.
A highly selective electrode for iodide ion based on a thiopyrilium derivative as an excellent ionophore is described. At pH 5.5-8.0, the electrode responds to iodide ion in a linear range from 1.0×10−1 to 8.0×10−7 M with a slope of 60.2 mV per decade, and a detection limit of 2.0×10−7 M. Selectivity coefficients determined with the match potential method (MPM) indicate that the interference from inorganic and organic anions is very small. The proposed sensor shows a fast response time of approximately 15 s. It was applied as an indicator electrode in titration of iodide with Ag+.  相似文献   

8.
A novel ion selective carbon paste electrode for Cd2+ ions based on 2,2′-thio-bis[4-methyl(2-amino phenoxy) phenyl ether] (TBMAPPE) as an ionophore was prepared. The carbon paste was made based on a new nano-composite including multi-walled carbon nanotubes (MWCNTs), nanosilica and room-temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The constructed nano-composite electrode showed better sensitivity, selectivity, response time, response stability and lifetime in comparison with typical Cd2+ carbon paste sensor for the successful determination of Cd2+ ions in water and in waste water samples. The best performance for nano-composite sensor was obtained with an electrode composition of 18% TBMAPPE, 20% BMIM-PF6, 48% graphite powder, 10% MWCNT and 4% nanosilica. The new electrode exhibited a Nernstian response (29.95?±?0.10?mV?decade?1) toward Cd2+ ions in the range of 3.0?×?10?8 to 1.0?×?10?1?mol?L?1 with a detection limit of 7.5?×?10?9?mol?L?1. The potentiometric response of prepared sensor was independent of the pH of test solution in the pH range 3.0 to 5.5. It had a quick response with a response time of about 6?s. The proposed electrode showed fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions.  相似文献   

9.
新型导电聚合物-聚吡咯溴离子化学传感器   总被引:1,自引:0,他引:1  
本文用电化学方法把导电聚合物聚吡咯(PPy)修饰在玻碳(GC)电极上, 研究了Br^-离子的掺杂效应和薄膜电极的电化学行为, 研制一种新型Br^-离子选择电极, 电极的响应机制是基于导电聚合物中阴离子的掺杂效应, 详细研究了聚合条件对电极电位响应性能的影响, 电极具有内阻小、响应快、抗毒化能力强、制备简便等优点, 电极对1x10^-^1-x10^-^4MBr^-呈能斯特响应, 检测下限7x10^-^5M, 斜率61mV/PBr^-。本文结果是化学修饰电极技术在化学传感器方面应用的有意义的尝试, 薄膜的良好导电性质使之更易于制备离子敏感电子学器件和生物电子学器件。  相似文献   

10.
Wu Z  Zhang Y  Ma JS  Yang G 《Inorganic chemistry》2006,45(8):3140-3142
Strategies of both self-assembly and metal ion replacement were adopted in the development of new metal ion sensors for Zn2+ and Hg2+. Ligand BPBA, phenylene-bridged bis(pyrrol-2-ylmethyleneamine), could self-assemble to form a molecular square in the presence of Zn2+, which showed strong emission in solution. The fluorescent emission of formed BPBA-Zn2+ dropped with the addition of Hg2+. BPBA could be a good Zn2+ sensor candidate and BPBA-Zn2+ could be a good Hg2+ sensor candidate based on the mechanisms of the chelation-enhanced fluorescence effect and the replacement of central metal ion induced chelation-enhanced fluorescence quenching effect, respectively.  相似文献   

11.
A new ratiometric fluorescent chemosensor based on a polyimine macrocycle ligand 1 has been synthesized. The chemosensor can exhibit a pronounced fluorescence response and high selectivity to Zn2+ ion over other 15 metal ions, including Cd2+. Sensor 1 appears an emission peak at 370 nm. Upon the addition of Zn2+ ion, the typical emission peak for 1 at 370 nm is obviously quenched, but a new emission peak at around 470 nm appears and shows a large enhancement due to the formation of a 1:1 Zn2+-1 complex. In addition, there is a good linear relationship between the fluorescence ratio I470nm/I370nm and the concentration of Zn2+, which makes a ratiometric assay of Zn2+ ion possible.  相似文献   

12.
A new sensor to quantitatively sense aluminum in real sample conditions is presented that uses the potentiometric ion selective electrodes. Aluminum is a cation that plays an important role in the environmental process. This approach is proposed to determine aluminum levels in real samples in the required range (10?6–10?2 M). Carbon paste electrode (CPE) is introduced here as a potentiometric sensor to measure free concentration of aluminum ion. Octaethylporphyrin (OEP) acts as a selective aluminum recognition agent in the CPE. The suitable selectivity coefficient is obtained for the CPEs compare to interfering cation. The Nernstian slope and detection limit are achieved 18.4 mV/decade and 2.5 × 10?6 M Al3+, respectively. Finally, the proposed method is applied to determine aluminum concentration in real water samples and the result of this method is in agreement with the result of atomic absorption spectroscopy (AAS).  相似文献   

13.
A half-oxidized platinum electrode modified with a monolayer of ferrocene is proposed as a potentiometric sensor for l-ascorbic acid in an aqueous glycine buffer pH 2.2. The ferrocene was covalently attached to the surface by a silane carbon chain. The potentials of 15 electrodes were measured and a slope of (50 ± 8.8) mV per decade change in concentration of ascorbic acid was obtained over the concentration range 10?3-10?6 M. Recovery experiments with pure l-ascorbic acid solutions showed a relative standard deviation of 1.9%, in the analysis of fresh orange juice, the relative standard deviation was 6.1%.  相似文献   

14.
Blaz T  Migdalski J  Lewenstam A 《The Analyst》2005,130(5):637-643
A reference electrode for potentiometric measurements based on conducting polymers (CP) doped with pH buffering ligands is described. Both the CPs and doping ligands are selected and adjusted in such a way that possible ionic and redox sensitivity is hampered, while the pH buffering property of the CP film is exposed. In this way, the electric potential drop at the conducting polymer|solution interface is stabilized and close to constant over a certain pH range. The electrode behaves as a pseudo-reference electrode in amphiprotic solvents or their mixtures, e.g. water-alcohol mixtures. For the first time titration of sulfates with lead(ii) in water-methanol solution using two "plastic" electrodes, CP-based Pb(2+)-sensitive indicator and CP-based reference electrode, is shown. Because the electrode is junction-less it may easily be miniaturized and maintained and thus may serve in frontier applications of sensors.  相似文献   

15.
Gupta VK  Prasad R  Kumar A 《Talanta》2004,63(4):1027-1033
Membrane incorporating [Mg{(TAP)(SBn)8}] complex, (I), as ionophore with composition I:NaTPB:DOP:PVC in the ratio 10:2:133:200 (w/w) exhibits the best result for potentiometric sensing of Mg2+ ions. This gives linear potential response in the concentration range of 9.4×10−6 to 1.0×10−1 M with a slope of 29.2±0.4 mV per decade of activity of Mg2+. Standard deviation in observed values of potentials in this concentration range, from the least square fit line, found to be 2.91 mV with 90% confidence limit lying within ±0.4 mV per decade of activity. The electrode works satisfactorily in the pH range 3.5-7.8 and shows a fast response time of 13±2 s. It shows good selectivity for Mg2+ over other mono-, bi- and tri-valent cations. Only K+ and Zn2+ cause slight interference if present at concentrations ≥1.0×10−5 M. The electrode is durable and can be used over a period of 5 months with good reproducibility (∼1% error). It has been successfully used as an indicator electrode in potentiometric titration of Mg2+ against EDTA as well as for the determination of Mg2+ in simulated mixtures.  相似文献   

16.
A new modified carbon paste electrode based on a recently synthesized mercury (II) complex of a pyridine containing proton transfer compound as a suitable carrier for Br ion is described. The electrode has a linear dynamic range between 3.00×10−2 and 1.0×10−5 M with a near-Nernastian slope of 61.0±0.9 mV per decade and a detection limit of 4.0×10−6 M (0.32 ppm). The potentiometric response is independent of the pH of the solution in the pH range 4.0–8.3. The electrode possesses the advantages of low resistance, fast response and good over a variety of other anions. It was applied as an indicator electrode in potentiometric titration of bromide ions and for the recovery of Br from tap water.  相似文献   

17.
Nitrate-doped polypyrrole (PPy) films on a glassy carbon substrate have been prepared electrochemically in aqueous, acetonitrile, and propylene carbonate solutions for use as nitrate sensors. Lithium nitrate, sodium nitrate, nitric acid, tetraethylammonium p-toluene sulfonate (TS), and tetradodecylammonium nitrate (TDN) were employed as electrolytes. The effect of dibutylphthalate (DBP) as a plasticizer on the sensitivity and lifetime of PPy film sensors was also investigated. A Nernstian behavior with a slope of 56.9 m V/decade over 0.1–7.4 × 10−5 M NO and a detection limit of 4.7 × 10−5 M were observed for the polymer sensor prepared in acetonitrile solution containing lithium nitrate and 15% plasticizer (DBP). A lifetime of more than 6 months for this PPy film electrode was obtained.  相似文献   

18.
Responses of polypyrrole based ion-selective chloride electrode were investigated in chloride and redox media. Bifunctional character of the potentiometric response of the polypyrrole films doped with chloride ions was observed being sensitive both to chloride ions and to the redox potential of the solution, however the redox response seems to predominate.  相似文献   

19.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   

20.
Sun C  Zhao J  Xu H  Sun Y  Zhang X  Shen J 《Talanta》1998,46(1):15-21
A novel iodide ion-selective electrode has been produced based on a molecular deposition technique in which water-soluble porphyrin was alternatively deposited with water-soluble polypyrrole on a 2-aminoethanethiol modified silver electrode. The potentiometric response is independent of pH of the solution between pH 1 and 7, while it is dependent on the nature of the medium. The electrode has a linear dynamic range between 1.6x10(-6) and 0.1 M with a Nernstian slope of 59 mV/decade and a detection limit of 1.0x10(-6) M in acetate buffer (0.1 M, pH 4.6). The electrode has the advantages of low resistance, short conditioning time and fast response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号