首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary polymer electrolyte (PE) based on poly(acrylonitrile) (PAN), 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (EMImBF4), sulfolane (TMS) and lithium hexafluorophosphate salt (LiPF6) (PAN-EMImBF4-sulfolane-LIPF6) was prepared by the casting technique. Obtained PE films of ca. 0.2–0.3 mm in thickness showed good mechanical properties. They were examined using scanning electron microscopy (SEM), thermogravimetry (TGA, DSC), the flammability test, electrochemical impedance spectroscopy (EIS) and galvanostatic charging/discharging. SEM images revealed a structure consisting of a polymer network (PAN) and space probably occupied by the liquid phase (LiPF6 + EMImBF4 + sulfolane). The polymer electrolyte in contact with an outer flame source did not ignite; it rather underwent decomposition without the formation of flammable products. Room temperature specific conductivity was ca. 2.5 mS cm?1. The activation energy of the conding process was ca. 9.0 kJ mol?1. Compatibility of the polymer electrolyte with metallic lithium and graphite anodes was tested applying the galvanostatic method. Charge transfer resistance for the C6Li → Li+ + e? anode processes, estimated from EIS curve, was ca. 48 Ω. The graphite anode capacity stabilizes at ca. 350 mAh g?1 after the 30th cycle (20 mA g?1).  相似文献   

2.
在1 mol/L LiPF6/碳酸乙烯酯+碳酸二甲酯+碳酸甲乙酯(体积比1∶1∶1)电解液中,采用恒流充放电测试、循环伏安法(CV)、扫描电子显微镜(SEM)、能量散射光谱(EDS)、电化学阻抗谱(EIS)等测试技术,研究了添加剂硫酸亚乙酯(DTD)对锂离子电池性能及石墨化中间相碳微球(MCMB)电极/电解液界面性质的影响。 结果表明,在电解液中引入体积分数0.01%DTD后,MCMB/Li电池可逆放电容量从300 mA·h/g提高至350 mA·h/g,电池总阻抗降低,循环稳定性提高。CV测试发现,在首次还原过程中,DTD在电极电位1.4 V左右(vs Li/Li+)发生电化学还原,参与了MCMB电极表面固体电解质相界面膜(SEI膜)的形成过程。 同时,DTD对LiMn2O4电极性能无不良影响。  相似文献   

3.
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1−x CoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5. Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804)  相似文献   

4.
A hybrid solid electrolyte interphase (SEI) formation additive, vinylene carbonate (VC)–LiNO3, was investigated in carbonic ester electrolytes. An efficiency of lithium plating/stripping as high as nearly 100% and spherical Li deposits were obtained. The electrochemical impedance spectroscopy (EIS) results demonstrate that the modified SEI is very stable and of good conductivity. X-ray photoelectron spectroscopy (XPS) results indicate that VC–LiNO3 dominates the surface chemistry of the Li anode. The formation of Li3N in the SEI contributes to the enhancement of the anode performance.  相似文献   

5.
A composite of aminosilane-grafted TiO2 (TA) and graphene oxide (GO) was prepared via a hydrothermal process. The TiO2/graphene oxide-based (TA/GO) anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)) at room temperature and in sulfolane (1 M lithium hexafluorophosphate (LiPF6) in tetramethylene sulfolane (TMS)). Scanning and transmission electron microscopy (SEM and TEM) observations of the anode materials suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte with vinylene carbonate (VC) leads to small changes on the surface of TA/GO particles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2 + 10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes in the range 5–50 mA g?1. The capacity of the anode, working at a low current regime of 5 mA g?1, was ca. 245 mA g?1, while a current of 50 mA g?1 resulted in a capacity of 170 mA g?1. The decrease in anode capacity with increasing current rate was interpreted as the result of kinetic limits of electrode operation. A much lower capacity was observed for the system TA/GO│1 M LiPF6 in TMS + 10 wt.% VC│Li.  相似文献   

6.
Graphite thin film anodes with a high IR reflectivity have been prepared by a spin coating method. Both ex situ and in situ microscope FTIR spectroscopy (MFTIRS) in a reflection configuration were employed to investigate interfacial processes of the graphite thin film anodes in lithium-ion batteries. A solid electrolyte interphase layer (SEI layer) was formed on the cycled graphite thin film anode. Ex situ MFTIRS revealed that the main components of the SEI layer on cycled graphite film anodes in 1 mol L -1 LiPF6 /ethylene carbonate + dimethyl carbonate (1:1) are alkyl lithium carbonates (ROCO2 Li). The desolvation process on graphite anodes during the initial intercalation of lithium ion with graphite was also observed and analyzed by in situ MFTIRS.  相似文献   

7.
Properties of CF x /Li and CF x /Na cells were examined while using galvanostatic charging/discharging, electrochemical impedance spectroscopy and scanning electron microscopy (SEM). The capacity during the first cycle was as high as ca. 1000 mAh g?1. Such an electrode is suitable for primary CF x /Li and CF x /Na batteries. SEM images of CF x cathode showed that during discharging it was transformed into amorphous carbon and LiF or NaF crystals (of diameter of ca. 5–20 μm). These systems (C?+?LiF or C?+?NaF) cannot be reversibly converted back into CF x /Li or CF x /Na, respectively. Exchange current densities are between 10?7 Acm?2 and 10?9 Acm?2 when working with LiPF6 and NaPF6 electrolytes (1.12?×?10?7 Acm?2 and 6.82?×?10?9 Acm?2, respectively). Those values are low and indicate that the charge transfer process may be the rate-determining step. Activation energies for the charge transfer process were 57 and 72 kJ mol?1 for CF x /LiPF6 and CF x /NaPF6 systems, respectively. Higher activation energy barrier for the CF/Na+?+?e??→?C?+?NaF reaction results in lower observed exchange current density in comparison to the system with lithium ions.  相似文献   

8.
The effect of the fluoroethylene carbonate (FEC) addition in electrolyte on LiFePO4 cathode performance was investigated in low-temperature electrolyte LiPF6/EC/PC/EMC (0.14/0.18/0.68). Cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge tests were conducted in this work. In the presence of FEC, the polarization of LiFePO4 electrode decreased both at room and low temperatures. Meanwhile, the exchange current density increased. The rate capability of LiFePO4 electrode was greatly enhanced as well. The morphology of the solid electrolyte interphase (SEI) on LiFePO4 surface was modified with the addition of FEC as confirmed by scanning electron microscopy measurement. A compact film with small impedance was formed on LiFePO4 surface compared to the case of FEC-free. The compositions of the film were analyzed by X-ray photoelectron spectroscopic measurement. The contents of Li x PO y F z , LiF, and the carbonate species generated from solvents decomposition were reduced. The modified SEI promoted the migration of lithium ion through the electrode/electrolyte interphase and enhanced the electrochemical performance of the cathode.  相似文献   

9.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

10.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

11.
Aminoalkylsilanes with oligo(ethylene oxide) units were designed and synthesized as multifunctional electrolyte additives for lithium-ion batteries. The chemical structures were fully characterized by nuclear magnetic resonance (NMR) spectroscopy and their thermal properties, viscosities, electrochemical windows, and ionic conductivities were systematically measured. With adding one of these compounds (1 vol. %, DSC3N1) in the baseline electrolyte 1.0 M LiPF6 in EC: DEC (1:1, in volume), Li/LiCoO2 half cell tests showed an improved cyclability after 100 cycles and improved rate capability at 5C rate condition. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopic (EDS) analysis confirmed the acid scavenging function and film forming capability of DSC3N1. These results demonstrated that the multifunctional organosilicon compounds have considerable potential as additives for use in lithium-ion batteries.  相似文献   

12.
The interfacial properties of mesocarbon-microbeads (MCMB) and lithium electrodes during charge process in poly (vinylidenefluoride-co-hexafluoropropylene)-based gel electrolyte were investigated by in situ Raman microscopy, in situ Fourier transform-infrared (FTIR) spectroscopic methods, and charge–discharge, electrochemical impedance spectroscopy techniques. For MCMB electrode, the series phase transitions from initial formation of the dilute stage 1 graphite intercalation compound (GIC) to a stage 4 GIC, then through a stage 3 to stage 2, and finally to stage 1 GIC was proved by in situ Raman spectroscopic measurement. The formation of solid electrolyte interface (SEI) films formed on MCMB and metal lithium electrode was studied by in situ reflectance FTIR spectroscopic method. At MCMB electrode surface, the solvent (mostly ethylene carbonate) decomposed during charging process and ROCO2Li may be the product. ROCO2Li, ROLi, and Li2CO3 were the main composites of SEI film formed on lithium electrode, not on electrodeposited lithium electrode or lithium foil electrode.  相似文献   

13.
As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.  相似文献   

14.
运用电化学阻抗谱(EIS)研究了尖晶石LiMn2O4正极在1mol·L-1LiPF6-EC(碳酸乙烯酯)∶DEC(碳酸二乙酯)∶DMC(碳酸二甲酯),1mol·L-1LiPF6-EC∶DEC∶EMC(碳酸甲乙酯)和1mol·L-1LiPF6-EC∶DMC三种不同电解液中,-20-20℃范围内的阻抗谱特征随温度的变化.研究结果表明,温度强烈影响尖晶石LiMn2O4正极的阻抗谱特征,而电解液组成对尖晶石LiMn2O4正极阻抗谱特征的影响较小,但电解液组成对锂离子在尖晶石LiMn2O4正极中嵌入脱出过程相关动力学参数影响较大.测得尖晶石LiMn2O4正极在上述三种电解液中,锂离子迁移通过固体电解质相界面(SEI)膜的离子跳跃能垒平均值分别为7.60、16.40和18.40kJ·mol-1;电子电导率的热激活化能平均值分别为44.77、35.47和68.06kJ·mol-1;嵌入反应活化能平均值分别为52.19、46.19和69.86kJ·mol-1.  相似文献   

15.
Solid electrolyte interphase (SEI) film formation on graphite electrodes was studied on highly oriented pyrolytic graphite (HOPG) in nonaqueous electrolyte by in situ electrochemical atomic force microscopy (AFM). For potentials negative to 0.7 V versus Li|Li+ a SEI film is formed on the HOPG electrode surface. After the first cycle the film is rough and covers the surface of the HOPG electrode only partially. After the second cycle the HOPG surface is fully covered by a compact film. The thickness of the SEI film was measured by increasing the pressure of the AFM tip and thus scraping a part of the electrode surface. In this way a thickness of about 25 nm was found for the SEI film formed after two scan cycles between 3 and 0.01 V versus Li|Li+.  相似文献   

16.
Solid electrolyte interface (SEI) is a critical factor that influences battery performance. SEI layer is formed by the decomposition of organic and inorganic compounds after the first cycle. This study investigates SEI formation as a product of electrolyte decomposition by the presence of flouro-o-phenylenedimaleimaide (F-MI) additive. The presence of fluorine on the maleimide-based additive can increase storage capacity and reversible discharge capacity due to high electronegativity and high electron-withdrawing group. The electrolyte containing 0.1 wt% of F-MI-based additive can trigger the formation of SEI, which could suppress the decomposition of remaining electrolyte. The reduction potential was 2.35 to 2.21 V vs Li/Li+ as examined by cyclic voltammetry (CV). The mesocarbon microbeads (MCMB) cell with F-MI additive showed the lowest SEI resistance (Rsei) at 5898 Ω as evaluated by the electrochemical impedance spectroscopy (EIS). The morphology and element analysis on the negative electrode after the first charge-discharge cycle were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). XPS result showed that MCMB cell with F-MI additive provides a higher intensity of organic compounds (RCH2OCO2Li) and thinner SEI than MCMB cell without an additive that provides a higher intensity of inorganic compound (Li2CO3 and Li2O), which leads to the performance decay. It is concluded that attaching the fluorine functional group on the maleimide-based additive forms the ideal SEI formation for lithium-ion battery.  相似文献   

17.
The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.  相似文献   

18.
To discuss the source of sulfolane (SL) in decreasing the interface resistance of Li/mesophase carbon microbeads cell with lithium bis(oxalate)borate (LiBOB)‐based electrolyte, the morphology and the composition of the solid electrolyte interphase (SEI) layer on the surface of carbonaceous anode material have been investigated. Compared with the cell with 0.7 mol l?1 LiBOB‐ethylene carbonate/ethyl methyl carbonate (EMC) (1 : 1, v/v) electrolyte, the cell with 0.7 mol l?1 LiBOB‐SL/EMC (1 : 1, v/v) electrolyte shows better film‐forming characteristics in SEM (SEI) spectra. According to the results obtained from Fourier transform infrared spectroscopy, XPS, and density functional theory calculations, SL is reduced to Li2SO3 and LiO2S(CH2)8SO2Li through electrochemical processes, which happens prior to the reduction of either ethylene carbonate or EMC. It is believed that the root of impedance reduction benefits from the rich existence of sulfurous compounds in SEI layer, which are better conductors of Li+ ions than analogical carbonates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO2/graphite lithium‐ion cells using LiPF6 (1M ) in carbonate solvents as electrolyte was investigated by means of x‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The analyses were carried out at different potentials of the first and the fifth cycles, showing the potential‐dependent character of the surface‐film species formation. These species were mainly identified as Li2CO3 up to 3.8 V and LiF up to 4.2 V. This study shows the formation of the SEI during charging and its partial dissolution during discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号