首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spontaneous entropic phase separation phenomena occur in a wide range of systems containing highly anisotropic colloidal particles. Among these are aqueous suspensions of negatively charged cellulose I nanocrystals produced by sulfuric acid hydrolysis of native cellulose, which phase separate into isotropic and chiral nematic liquid-crystalline phases. Phase separation of an isotropic phase from a completely ordered nanocrystal suspension may be induced by the addition of salts or nonadsorbing macromolecules. In previous work (Edgar, C. D.; Gray, D. G. Macromolecules 2002, 35, 7400-7406), an isotropic phase was found to form over a period of several days when blue dextran (a sulfonated triazine dye, Cibacron blue 3G-A, covalently attached to high-molecular-weight dextran chains) was added to initially ordered suspensions. Here we report work showing that the observed phase separation was associated with the charged dye molecules attached to the dextran. The Cibacron blue 3G-A dye attached to blue dextran was found to induce greater phase separation than free (unbound) dye; at increasing ionic strength, depletion attractions due to the blue dextran increasingly contribute to the phase separation.  相似文献   

2.
Cellulose (7% water) was thoroughly dispersed in various ionic liquids (IL) and the turbidity of the mixture was investigated to distinguish real dissolution from fine dispersion. The dissolving ability of 1-butyl-3-methylimidazolium chloride (BMIMCl know cellulose solvent) and 11 other commercial IL (not reported as cellulose solvents) was studied. From the latter, only 1,3-dimethylimidazolium dimethylphosphate (DMIMDMP) could dissolve cellulose. The influence of water content on the real dissolution of cellulose in these two IL was investigated. The maximum theoretical amount of dissolved anhydrous cellulose in the IL was determined by extrapolation methodology at different temperatures. For cellulose in BMIMCl, it was 8.75 g/100 g of IL at 95 °C. DMIMDMP could achieve real cellulose dissolution only in a practically anhydrous system (2.3 g/100 g of IL at 30 °C) but dissolution was physically limited by high viscosity.  相似文献   

3.
The UNIFAC model is extended to mixtures of ionic liquids consisting of the imidazolium cation and the hexafluorophosphate anion with alkanes, cycloalkanes, alcohols and water. Two new main groups, the imidazolium and the hexafluorophosphate groups, are introduced in UNIFAC. The required group interaction parameters between these groups and the existing UNIFAC main groups, CH2, OH and H2O, are determined by fitting binary liquid–liquid equilibrium and infinite dilution activity coefficient experimental data. The predictive capability of the extended UNIFAC model is examined against experimental data for vapour–liquid equilibrium, liquid–liquid equilibrium and activity coefficients at infinite dilution of binary and ternary systems containing 1-alkyl-3-alkyl′-imidazolium hexafluorophosphate ionic liquids, alkanes, cycloalkanes, alcohols and water. The results indicate that UNIFAC is a reliable model for phase equilibrium predictions in mixtures containing this type of ionic liquids.  相似文献   

4.
The chemical modification of SCB cellulose with succinic anhydride using 1-butyl-3-methylimidazolium chloride ionic liquid/DMSO system as reaction medium was studied. The parameters including the molar ratio of succinic anhydride/anhydroglucose units in cellulose from 1:1 to 12:1, reaction time 5-120 min, and reaction temperature 85-105 °C were investigated. The results showed that the degree substitution of succinylated cellulosic preparations ranged from 0.037 to 0.53. It was found that the treatment of the native cellulose in the ionic liquid/DMSO system under the conditions given significantly degraded the cellulose and completely destroyed the cellulose crystals. FT-IR and solid-state CP/MAS 13C NMR spectra produced evidence for succinoylation reaction and the results showed that succinoylation occurred at positions C-6, C-2 and C-3. The thermal stability of the succinylated cellulose decreased upon chemical modification.  相似文献   

5.
张金明  张军 《高分子科学》2015,33(12):1633-1639
A series of cellulose 3,5-dimethylphenylcarbamates(CDMPCs) with different degrees of substitution(DS) and degrees of polymerization(DP) were homogeneously synthesized in 1-allyl-3-methylimidazolium chloride(Amim Cl). Then, the CDMPCs were coated on silica gel and used as chiral stationary phases(CSPs), and their chiral recognition abilities for seven racemates were evaluated by high performance liquid chromatography. The results showed that DS and DP of CDMPCs had a great influence on chiral recognition abilities of the CSPs. The CSPs with the DS ≈ 1 gives a low chiral recognition to most racemates. On the contrast, the CSPs with the DS ? 2 exhibited high chiral separation abilities. For example, six racemates could be separated on the CSP with CDMPC of DS ≈ 2(CSP-2). Especially, for the enantioseparation of 1-(2-naphthyl) ethanol and Tr?ger's base, CSP-2 gave the highest separation ability in all of CSPs. On the other hand, when the DP of cellulose was in a range from 39 to 220, the chiral separation abilities of CDMPCs increased as the DP increased. This work demonstrates that the structure of cellulose esters such as DS and DP has important effect on their chiral separation ability, and therefore provides a practical method to design and prepare desirable CSPs for different racemates.  相似文献   

6.
Increased reactivity of cellulose in ionic liquids was revealed when cellulose was protected with a 4-methoxytrityl moiety in the imidazolium-based ionic liquid, 1-allyl-3-methylimidazolium chloride ([amim]Cl). Selectively protected 2,6-di-O-(4-methoxytrityl)cellulose was obtained in one reaction step with a DS of close to 2, and was characterised by NMR.  相似文献   

7.
The ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction medium was studied for the synthesis of cellulose benzoates by homogeneous acylation of dissolved cellulose with benzoyl chlorides in the absence of any catalysts. Cellulose benzoates with a degree of substitution (DS) in the range from about 1 to 3.0 were accessible under mild conditions. The DS of cellulose derivatives increased with the increase of the molar ratio of benzoyl chloride/anhydroglucose unit (AGU) in cellulose, reaction time, and reaction temperature. Benzoylation of cellulose with some 4-substituted benzoyl chlorides including 4-toluoyl chloride, 4-chlorobenzoyl chloride and 4-nitrobenzoyl chloride was also readily carried out under mild conditions. Furthermore, regioselectively substituted mixed cellulose esters were synthesized in this work. All products were characterized by means of FT-IR, 1H-NMR, and 13C-NMR spectroscopy. In addition, at the end of benzoylation of cellulose, the ionic liquid AmimCl was easily recycled. When the recycled AmimCl was used as the reaction media, the cellulose benzoate with a similar DS was obtained under comparable reaction conditions.  相似文献   

8.
Selective solvation can be crucial in phase separation in polar binary mixtures (water–oil) with a small amount of hydrophilic ions or hydrophobic particles. They are preferentially attracted to one of the solvent components, leading to a number of intriguing effects coupled to phase separation. For example, if cations and anions interact differently with the two components, an electric double layer emerges at a liquid–liquid interface. The main aim of this paper is to show that a strongly hydrophilic (hydrophobic) solute induces precipitation of water-rich (oil-rich) domains above a critical solute density np outside the solvent coexistence curve.  相似文献   

9.
Ionic liquids (ILs) immobilized on silica as novel high performance liquid chromatography (HPLC) stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase (SilprMim) was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ ion-exchange chromatography (RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica (ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated.  相似文献   

10.
Qin F  Liu Y  Chen X  Kong L  Zou H 《Electrophoresis》2005,26(20):3921-3929
A chemically bonded cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase (CSP) was prepared by a radical polymerization reaction. The prepared CSP was packed into fused-silica capillaries with inner diameter of 75 microm to perform enantiomer separations in CEC. The electrochromatographic behavior of the CSP was investigated. On the prepared CSP, high EOF could be generated under acidic mobile phases, which represented an advantage for the separation of acidic enantiomers. Several neutral, acidic, and basic enantiomers were resolved on the prepared CSP under aqueous mobile phases. The column efficiencies were between 20,000 and 100,000 plates/m, which were much higher than those of HPLC. In addition, it was observed that the separation of some enantiomers benefited from the adoption of THF as mobile phase modifier.  相似文献   

11.
Mixtures of hydrophobically graft-modified cellulose derivatives and their nonmodified analogues have been studied in aqueous solution. A qualitatively similar behavior was found in the phase behavior of nonionic as well as of cationic polymer systems. Over a large range of total polymer concentrations and mixture ratios the solutions phase separated into two phases of similar polymer concentration, with one of the phases enriched in the hydrophobically modified polymer. From the manufacturing process the cellulose derivatives investigated are likely to contain polymer chains with a rather continuous distribution in degrees of substitution and, possibly, substitution patterns. This causes a complex phase behavior that cannot be adequately described by a ternary representation. The multicomponent nature became apparent from composition analyses of the phases in equilibrium. It may thus be more appropriate to view the phase separation as a fractionation. A phase of small relative volume with a highly enhanced hydrophobe content (compared to the original hydrophobically modified polymer sample) was created. This was particularly obvious in more dilute solutions. Sometimes the phase separation was difficult to observe because the phases in equilibrium had similar polymer concentrations and, therefore, similar refractive indices. The observations presented here call for the attention of producers and users of these types of polymers. Received: 6 July 2000 Accepted: 6 September 2000  相似文献   

12.
离子液体双水相萃取分离苋菜红的研究   总被引:12,自引:0,他引:12  
建立了由亲水性离子液体四氟硼酸1-丁基-3-甲基咪唑([Bmim]BF4)和NaH2PO4形成的双水相体系萃取分离苋菜红的新方法.研究了盐的浓度、离子液体浓度、溶液酸度、其它共存物质对苋菜红萃取率的影响.结果表明,NaH2PO4加入量在2~2.5 g,离子液量在1.0~2.0 mL,苋菜红溶液量在1.5 mL,溶液酸度在pH 4~6范围,离子液体双水相体系对苋菜红有较高的萃取率(E%>90).用加入无机离子、不同类型表面活性剂和吸收光谱探讨了离子液体与苋菜红之间的作用.  相似文献   

13.
In this work, the phase behaviour of the binary system of carbon dioxide and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been studied experimentally. The equipment used for the experiments is the Cailletet set-up, based on visual observations of phase transitions of systems with constant overall composition. Results are reported for carbon dioxide concentrations ranging from 12.3 to 59.3 mol%, and within temperature and pressure ranges of 310–450 K and 0–15 MPa, respectively. The data reveal an extremely high capacity of the selected ionic liquid for dissolving CO2 gas, for example, reaching up to about 60 mol% within the above-mentioned pressure and temperature range. Also, the solubility of CO2 in the ionic liquid [emim][Tf2N] is compared to the solubility of CO2 in the ionic liquid [emim][PF6], an ionic liquid that shares the same cation.  相似文献   

14.
Flory's lattice theory for rigid rod molecules and Kuhn chains is used to calculate phase diagrams for cellulose/ammonia/ammonium thiocyanate solutions. Persistence length values measured by light scattering and reported previously are used as rod length values. Variations in the phase diagram based on varying rod length/solvent composition and cellulose molecular weight are explored. Spinodal curves are calculated in a region of the phase diagram predicting phase separation between two anisotropic solutions. Finally, calculated phase diagrams are compared to published data for the system. Discrepancies between theory and data may be accounted for by soft interactions between cellulose molecules and solvent which are not incorporated into the lattice theory.  相似文献   

15.
The rheological behaviors and gelation transitions in a polyethersulfone (PES)-modified epoxy system during phase separation were studied by rheometry, time-resolved light scattering, and differential scanning calorimetry. Two separate structural transitions in the curing process of the blend were identified as the first one because of phase separation and the second one related to cross-linking reaction of epoxy resin. Both the times of the two structural transition at different temperatures could be described well by the Arrhenius type equation. The complex viscosity exhibits an exponential growing process during phase separation at various temperatures, correlating to the light-scattering results. The exponential behavior of complex viscosity could be attributed to the viscoelastic flow of epoxy-rich escaping from PES-rich during phase separation process.  相似文献   

16.
Silica gels with well-defined pores both in micrometer and nanometer ranges were obtained by acid-catalyzed hydrolysis and polymerization of tetramethoxysilane in the presence of formamide. The micrometer-range structures of these gels are studied in terms of the phase diagram of the quasi two-component system, namely solvent-rich and silica-rich end compositions. The resulting interconnected structures and aggregates of particles are related to the occurrence of spinodal phase separation. The composition region that gave interconnected structures for the present system was much more limited and their characteristic sizes were much smaller than those for the previously reported systems containing an organic polymer. These results could be explained qualitatively by the effect of the degree of polymerization on the Flory-Huggins' type free energy change of mixing.  相似文献   

17.
Hyperbranched polyethylene (HBPE)/linear polystyrene (PS)/chloroform (CF) solution was selected as a model system to investigate the effect of branching structure on entanglement and phase separation behavior in semi-dilute ternary polymer solutions. All the HBPE materials in this work were found to have similar chain architectures and the critical molecular weight was estimated to be 81.2 kDa. The results obtained by elastic light scattering and intrinsic fluorescence methods suggested that all ternary solutions exhibited UCST transition behavior upon cooling. Also, it was found that the increase in the molecular weight of PS led to increase in the phase separation rate, consistent with de Gennes prediction. However, the increase of molecular weight of HBPE did not monotonously reduce the compatibility of polymer components and the phase separation rate in ternary blends is as follows: medium molecular weight HBPE (HBPE-M) > high molecular weight HBPE (HBPE-H) > low molecular weight HBPE (HBPE-L). This abnormal behavior can be explained by the fact that, (i) for HBPE-L, no entanglements between HBPE chains occurred and the branching effect can be ignored, and (ii) for HBPE-M and HBPE-H, entanglement of HBPE chains can be formed, and the dilution of branches on entanglement of backbones should be taken into consideration, that is, the shorter the branches of HBPE, the higher the possibility of interpenetration of HBPE backbones between neighboring molecules and, consequently, the faster aggregation of HBPE during phase separation. Furthermore, a simple model based on decomposition reaction was proposed to quantitatively describe the phase separation kinetics and the apparent activation energies of phase separation were calculated to be −150.3 and −52.3 kJ/mol for HBPE-M/PS/CF and HBPE-H/PS/CF systems, respectively.  相似文献   

18.
Phase separation behavior in aqueous mixture of different polyelectorolytes having like charges has been investigated as functions of concentration and charge density. When the charge densities of both polyelectorolytes were equally high, the compatibility between different polyelectorolytes was relatively good and the phase separation behavior was a normal upper critical solution temperature (UCST) type. With decreasing the charge density of one polyelectorolyte keeping the charge density of another polyelectrolyte unchanged, the compatibility between different polyelectorolytes became poorer. When the charge density of one polyelectorolyte was lowered below a certain value, the phase separation behavior suddenly changed from the UCST type to a lower critical solution temperature (LCST) type.  相似文献   

19.
The swelling and dissolution mechanisms of several cellulose derivatives (nitrocellulose, cyanoethylcellulose and xanthate fibres) are studied in aqueous systems (N-methylmorpholine-N-oxide—water with various contents of water, hydroxide sodium—water) and in ionic liquids. The results are compared with the five modes describing the swelling and dissolution mechanisms of cotton and wood cellulose fibres. The mechanisms observed for the cellulose derivatives are similar to the ones of cotton and wood fibres. Swelling by ballooning is also seen with cellulose derivatives, showing that this phenomenon is linked to the fibre morphology, which can be kept after undergoing a heterogeneous derivatisation. Patrick Navard and Thomas Heinze—Members of the European Polysaccharide Network of Excellence (EPNOE),  相似文献   

20.
We derived typical phase diagrams for aqueous solutions of methyl cellulose (MC) of different molecular weights via micro‐differential scanning calorimetry, small‐angle X‐ray scattering, and visual inspection. The phase diagrams showed the cooccurrence of gelation and phase separation and qualitatively agreed with the theoretically calculated diagrams. The sol–gel transition line and phase separation line of a lower critical solution point type shifted toward lower temperatures and lower concentrations with an increase in the MC molecular weight. The sol–gel transition line intersected at a temperature higher than the critical point of the phase separation; therefore, both sol–gel phase separation and gel–gel phase separation were possible, depending on the temperature. Specifically, through visual inspection of a high molecular weight MC sample in the critical temperature region, we observed phase separation into two coexisting gels with different polymer concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 91–100, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号