首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of an antimony(III) fluoride complex of the composition (C5H12NO2)SbF4·H2O (I) involving a cation of α-amino isovaleric acid (DL-valine, Val) is determined. Crystals are monoclinic: a = 12.2024(2) Å, b = 6.1636(1) Å, c = 15.5167(3) Å, Z = 4, space group P21/c. The structure is formed of DL-valinium (C5H12NO2)+ cations, complex [SbF4]nn? anions having a polymeric chain structure, and crystallization water molecules. The [SbF4]nn? complex anions consist of trigonal SbF4E bipyramids joined together by asymmetric bridging Sb–F(3)···Sb bonds. The structural units are organized into a threedimensional framework via N–H···F, N–H···O, and O–H···F hydrogen bonds.  相似文献   

2.
Complexes of 4′-(4′″-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L) with metal perchlorates and hexafluorophosphates, [ML2](ClO4)2 · nH2O and [ML2](PF6)2 · nH2O · mC2H5OH (M = Ni(II), Co(II), Zn(II), Cu(II); n = 0–3; m = 0–2), were synthesized. Their vibrational spectra were studied. The spectral criteria for ligand coordination through the terpyridinic nitrogen atoms were established. The conformational structure of the B15C5 macrocycles of a ligand molecule in the synthesized complexes was proposed. The complexes were studied by thermogravimetry.  相似文献   

3.
Based on the requirement for the comprehensive exploitation and utilization of the salt lake resources magnesium chloride and potassium chloride, a new technology to produce KCl and ammonium carnallite (NH4Cl·MgCl2·6H2O) by using NH4Cl as salting-out agent to separate carnallite is proposed. The solubilities of quaternary system KCl–MgCl2–NH4Cl–H2O were measured by the isothermal method at t = 60.00 °C and the corresponding phase diagram was plotted and analyzed. The analysis of this phase diagram shows that there are seven saturation points and eight regions of crystallization. These eight regions of crystallization represent salts corresponding to KCl, NH4Cl, MgCl2·6H2O, (K1?n (NH4) n )Cl, ((NH4) n K1?n )Cl, (K1?n (NH4) n )Cl·MgCl2·6H2O, KCl·MgCl2·6H2O and NH4Cl·MgCl2·6H2O. According to the phase diagram analysis and calculations, ammonium carnallite (NH4Cl·MgCl2·6H2O) and KCl can be obtained using carnallite as raw materials and ammonium chloride as salting-out agent at t = 60.00 °C. The new technology shows the advantages of being easy to operate and having low energy consumption. The research on this quaternary phase diagram is the foundation for reasonable development of carnallite resources and comprehensive utilization of the salt lake brines.  相似文献   

4.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

5.
Complex salts of the composition [Co(NH3)6](ReO4)3·2H2O (I), [Co(en)3](ReO4)3 (II), [Co(NH3)5H2O](ReO4)3·2H2O (III), and [Co(NH3)5Cl](ReO4)2·0.5H2O (IV) are obtained. Their crystal structures are determined by single crystal XRD. Crystallographic characteristics: (I) a = 9.9797(3) Å, b = 12.6994(3) Å, c = 14.7415(4) Å, β = 102.870(1)°, C2/c space group; (II) a = 8.0615(3) Å, b = 8.4483(4) Å c = 8.8267(4) Å, α = 61.923(2)°, β = 89.552(2)°, γ = 72.295(2)°, P1 space group; (III) a = 8.0086(4) Å, b = 12.9839(6) Å, c = 17.5122(7) Å, β=91.858(1)°, P21/n space group; (IV) a = 14.9446(3) Å, b = 14.6562(4) Å, c = 12.2434(4) Å, Cmc21 space group.  相似文献   

6.
Triethylammonium dicitratoborate monohydrate (C2H5)3NH[(C6H6O7)2B]·H2O (I) was synthesized for the first time. Its crystal structure was solved from single crystal X-ray diffraction data (a = 9.7821(2) Å, b = 23.2196(4) Å, c = 10.0705(2) Å; β = 90.97(1)°; Z = 4, space group P21/n, 5091 reflections with R int = 0.0219; R1 = 0.0733). The structural units of crystal I (the large dicitrato borate anion with a spirane structure, the triethylammonium cation, and the crystal water molecule) form a layered packing with a system of seven O-H...O and N-H...O hydrogen bonds.  相似文献   

7.
A complex triaqua[0.25(bromo)1.75(nitrato-O)]copper(II) 18-crown-6 hydrate (solvate), [CuBr0.25(NO3)1.75(H2O)3] · 18-crown-6 · 5H2O, is synthesized, and its crystal structure is studied by X-ray diffraction analysis (space group Cmc21, a = 13.705, b = 14.583, c = 13.174 Å, Z = 4; direct method, full-matrix least-squares refinement in the anisotropic approximation to R = 0.069 for 2547 independent reflections; CAD-4 automated diffractometer, λMoK α radiation). The mixed complex molecule is a randomly disordered mixture of [Cu(NO3)2(H2O)3] and [CuBr(NO3)(H2O)3] molecules with site occupancies of 0.875 and 0.125, respectively. The mixed complex molecule and 18-crown-6 molecule lie on the m plane. In the main complex molecule [Cu(NO3)2(H2O)3], the coordination polyhedron of the Cu2+ cation is a slightly distorted square pyramid. The 18-crown-6 molecule has the conformation of a crown with the approximate symmetry D 3d .  相似文献   

8.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

9.
Two new interesting entangled structures, namely, [Ni1.5(L)(bpy)2(H2O)3] n · 3nH2O (I) and [Cd3(L)2(bbi)2]n · nH2O (II)(where H3L is 4-(4-carboxyphenoxy)-phthalic acid, bpy is 4,4′-bipyridine, and bbi is 1,1′-(1,4-butanediyl)bis(imidazole)) have been synthesized and characterized by elemental analysis (EA), infrared spectra (IR), X-ray powder diffraction (XRPD), solid fluorescence and thermogravimetric analysis (TGA). Single-crystal X-ray diffraction analysis revealed that complex I possesses a 3D self-penetrating framework constructed from ladder-like and fishbone-like subunits. Complex II shows a 3D framework of two-fold interpenetration assembled from trinuclear Cd(II) clusters bridged by bbi and L3? ligands.  相似文献   

10.
Compounds with compositions [Rh(H2O)6]2(SO4)3·4H2O (I), (H3O)[Rh(H2O)6](SO4)2 (II), [Rh(H2O)5OH](SO4)·0.5H2O (III), and [Rh(H2O)6]2(SO4)·(H2SO4) x ·5H2O (IV) have been studied. The crystal structures of II, III, and IV were determined. All compounds crystallized in the monoclinic crystal system. Crystal data for II: a = 7.279(2) Å, b = 10.512(7) Å, c = 15.806(3) Å, β = 96.71(3)°, space group P21/n, Z = 2, d calc = 2.334 g/cm3; III: a = 20.433(4) Å, b = 7.820(2) c = 11.215(2) Å, β = 114.14(1)°, space group C2/c, Z = 8, d calc = 2.559 g/cm3; IV: a = 6.2250(4 Å), b = 27.0270(12) Å, c = 7.2674(5) Å, β = 97.04(3)°, space group P21/c, Z = 4, d calc = 2.143 g/cm3. The compounds were studied by IR spectroscopy and powder X-ray diffraction. All of the isolated crystalline phases are sparingly soluble in ethanol and well soluble in water.  相似文献   

11.
Coordination polymers of REEs with 2-aminoterephthalic acid [Ln2(C8H5NO4)3(H2O)5] n · 2nH2O (Ln = Eu, Gd, or Tb) and [Y2(C8H5NO4)3(H2O)4] n · 4nH2O were prepared by hydrothermal synthesis. Studies of the thermal behavior of these coordination polymers have shown that the removal of the solvate and the coordinated water molecules occurs at heating to 250°C and dehydratation products are stable up to 400°C. Detailed studies of the magnetic behavior of Eu, Gd, and Tb polymers were performed.  相似文献   

12.
Continuous substitutional solid solutions between cobalt and nickel phosphates with varied degree of anion protonation were obtained: Co1?x Ni x HPO4·1.5H2O and (Co1?x Ni x )3(PO4)2·8H2O, where 0 ≤ x ≤ 1.00. The thermolysis of the solid solutions was studied by the example of Co1?x Ni x HPO4·1.5H2O. The phases synthesized were compared with the previously described continuous solid solution Co1?x Ni x (H2PO4)2·2H2O.  相似文献   

13.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

14.
Complexes of Ni(II) and Co(II) of the formulae [Ni(H2O)4(pht)2] (1) and [Co(H2O)4(pht)2]·1,5NH3·H2O (2) (where pht = phenotoinate anion) were obtained and characterized physicochemically. [Ni(H2O)4(pht)2] (1) crystallizes in a monoclinic space group P21/c; a = 11.7358(8), b = 11,1250(8), 11.4182(7) Å; β = 97.076(5)°; V = 1479.41 Å3; Z = 2. The environment around the nickel and cobalt ions can be described as a distorted octahedron. The metal ion was found to bind to four water molecules and two nitrogen atoms derived from two anions of the monodentate phenytoinate. Four intramolecular hydrogen bonds designated as S(6) graph set are found in one [Ni(H2O)4(pht)2] (1) molecule. Two chain HB patterns, constructed by the [Ni(H2O)4(pht)2] molecules extending along the c and b axes, respectively, have been observed. The cobalt complex precipitates with the additional solvent molecules: one and a half of ammonia and one water. The results document the preferential binding of hydantoins to the metal ions through N(3) atom.  相似文献   

15.
By X-ray structural analysis the crystal structure of 2-bromo-3-phenylpropenal benzoylhydrazone (HL) was determined. The molecule is not flat. In the crystal the HL molecules form infinite chains with reciprocal van der Waals interaction. 2-Bromo-3-phenylpropenal hydrazone (HL) and thiosemicarbazone (HL′) react with cobalt, nickel, copper and zinc chlorides, nitrates and acetates to form coordination compounds of the composition Cu(HL)(L)2 [HL = C6H5-CH=CBr-CH=N-NH-C(O)-C6H5], MX2·2 HL′·nH2O [M = Co, Ni, Cu, Zn; X = Cl, NO3, HL′ = C6H5-CH=CBr-CH=N-NH-C(S)-NH2; n = 0–3], MX2·HL·n H2O [M = Ni, Cu; n = 0, 1], and ML′2·nH2O [M = Co, Ni, Zn; n = 0–3]. The same reactions in the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, 4-CH3C5H4N) afford complexes of the composition CuALCl and MALX·n H2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. Structure of the coordination node in the amine-containing copper derivatives is polynuclear, in complexes Cu(HL)(L)2 is octahedral, in other compounds it is tetrahedral. The azomethines (HL and HL′) in these complexes behave as bidentate N,O and N,S ligands. Thermolysis of the complexes includes a step of dehydration (60–90°C) and complete thermal decomposition (430–590°C).  相似文献   

16.
Two ternary cobalt(II) coordination polymers (CPs), namely [Co(L1)(npht)] n (1) and {[Co2(L2)2(npht)2(H2O)]·H2O} n (2) (L1 = 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl, L2 = 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, and H2npht = 4-nitrophthalic acid) have been synthesized and structurally characterized by X-ray crystallography. Both CPs feature similar 1D infinite chains containing two distinct loops. CP 1 further forms a 3D supramolecular network via weak C–H···O hydrogen bond interactions. CP 2 shows a 1D two-layer chain structure, assembled through ππ stacking interactions. The electrochemical, luminescence, and photocatalytic activities of the two CPs for the removal of methylene blue under visible or UV light were investigated. Possible photocatalytic mechanisms are discussed.  相似文献   

17.
The separation of lanthanides from calcium compounds in the form of oxalates from hot nitric acid solutions of Ln(NO3)3 and Ca(NO3)2 with the insertion of oxalic acid and a Ln2(C2O4)3 · nH2O crystal seed was studied by mass-spectrometric, atomic emission, microscopic, X-ray diffraction, and fluorescence analyses. The produced single-phase precipitate was found to contain an isomorphic impurity of La–Sm oxalates, while calcium oxalate remained in the hot nitric acid solution (95°С) saturated with oxalic acid. This facile and efficient method provides Ln2(C2O4)3 · nH2O (n = 9.5 mol) in one step in a 80.1 rel. % yield, with the major phase being at least 99.4 wt %. The unit cell parameters were determined for the crystals of the isomorphic lanthanide oxalate mixture: a = 11.243(2) Å, b = 9.591(2) Å, c = 10.306(2) Å; α = γ = 90°, β = 114.12(1)°; Z = 2; V = 1013.7(5) Å3.  相似文献   

18.
Three two-dimensional coordination polymers [Cd(2,3-Pyma)Cl2] n (I), {[Cd(2,3-Pyma)(1,4-Chdc)] · 4H2O}n (II) and {[Zn2(2,3-Pyma)(1,2,4,5-Bttc)(H2O)4] · 6H2O} n (III) (2,3-Pyma = (2,3-pyridylmethyl) amine, H2-1,4-Chdc = 1,4-cyclohexanedicarboxylic acid, and H4-1,2,4,5-Bttc = 1,2,4,5-benzenetetracarboxylic acid) have been synthesized and structurally characterized by single crystal X-ray crystallography (CIF files CCDC nos. 989461 (I), 1055685 (II) and 1055686 (III)). Three complexes are all twodimensional layer networks bridged by the flexible 2,3-Pyma ligands or the carboxylate ligands. It is noted that the flexible 1,4-Chdc ligands bind the Cd2+ ions into a helical chain structure in complex II. The photoluminescence and thermal properties are investigated.  相似文献   

19.
Three new Co(II) coordination polymers, [Co(L1)(bpdc)] n (1), [Co(L2)(ndc)(H2O)·2H2O] n (2) and [Co(L3)(ndc)(H2O)·H2O] n (3) (L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2bpdc = 4,4′-biphenyldicarboxylic acid, H2ndc = 2,6-naphthalenedicarboxylic acid) have been synthesized under hydrothermal conditions and structurally characterized by X-ray crystallography. All three complexes feature (4,4) networks that extend into 3D supramolecular frameworks via hydrogen bonding interactions. The luminescence properties and catalytic activities of these complexes with respect to the degradation of methyl orange in a Fenton-like process have been investigated.  相似文献   

20.
The crystal structure of complex [Mg(H2O)6][VO(edta)] · 3.5H2O (I) was determined by X-ray diffraction study. The crystals are monoclinic, a = 6.779 Å, b = 13.373(6) Å, c = 25.054 Å, β = 96.55°, Z = 4, space group P21. The unit cell contains two independent [VO(edta)]2? anions, two independent [Mg(H2O)6]2+ cations, and seven crystal-water molecules. The coordination polyhedron of each vanadium atom is formed by five donor atoms of the edta ligand (2N + 3O) (V(1)-N(1), 2.278 Å; V(1)-N(2), 2.149 Å; V(2)-N(3), 2.301 Å; V(2)-N(4), 2.165 Å; V-O(acet), 2.00 ± 0.02 Å) and the oxygen atom of the oxo group (V-O, 1.60 ± 0.01 Å). The edta ligands and the vanadium atom form three glycinate rings: two R-type rings and one G-type ring (one acetate branch remains free), as well as an E-type ring with an asymmetric gauche configuration. The [Mg(H2O)6] cations are slightly distorted octahedra (Mg-O, 2.013–2.132 Å, the OMgO angles are 86.6°–94.2°). The H2O molecules form a bifurcate system of H-bonds. The crystals of compound I belong to OD-type structures with an incomplete ordering of layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号