首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theory is proposed of the self-sustaining oscillations of a weak shock on an airfoil in steady, transonic flow. The interaction of the shock with the boundary layer on the airfoil produces displacement thickness fluctuations which convect downstream and generate sound by interaction with the trailing edge. A feedback loop is established when this sound impinges on the shock wave, resulting in the production of further fluctuations in the displacement thickness. The details are worked out for an idealized mean boundary layer velocity profile, but strong support for the basic hypotheses of the theory is provided by a comparison with recent experiments involving the generation of acoustic “tone bursts” by a supercritical airfoil section.  相似文献   

2.
Recent experimental measurements have demonstrated that net acoustic energy dissipation can occur when sound waves interact with free shear layers, which are produced either by boundary layer separation in mean fluid flow at sharp edges, or by separation of the boundary layer in the acoustic flow at an edge in the absence of mean flow. This paper presents theoretical results which are offered in an attempt to explain these observations quantitatively. Comparison is made between the predicted and measured net energy loss which occurs upon transmission of high amplitude impulsive acoustic waves through various duct terminations, and also between calculated and measured reflection coefficients in the duct. The agreement is generally at least qualitatively good, and would appear to justify the physical assumptions on which the theoretical arguments are based.  相似文献   

3.
An acoustically resistive and axially symmetric object is placed in a two-layer ocean very far from a point source of acoustic waves. The object is either floating in the water layer or buried in the sediment layer. Both layers are homogenous. The size of the object is small when compared to the depth of the water channel. The free surface of the sea is assumed to be soft and the bottom is assumed to be hard. Between the two layers the classical diffraction boundary conditions are taken. An extension of the Deep Water Approximation method [Ergatis P. Radiation, propagation and scattering of acoustic waves in an underwater environment. PhD thesis, University of Patras; 1997 (in Greek)] is being provided to cover the case of resistive scatterers [Colton, D., Kress, R. Integral equation methods in scattering theory. New York: Wiley; 1983].  相似文献   

4.
A hybrid method is applied to predict trailing edge noise based on a large eddy simulation (LES) of the compressible flow problem and acoustic perturbation equations (APE) for the time-dependent simulation of the acoustic field. The acoustic simulation in general considers the mean flow convection and refraction effects such that the computational domain of the flow simulation has to comprise only the significant acoustic source region. Using a modified rescaling method for the prediction of the unsteady turbulent inflow boundary layer, the LES just resolves the flow field in the immediate vicinity of the trailing edge. The linearized APE completely prevent the unbounded growth of hydrodynamic instabilities in critical mean flows.  相似文献   

5.
Boundary layer effects on an acoustic field in a unidirectional flow with transverse shear are studied. The acoustic pressure variation in the direction normal to that of the flow is governed in the boundary layer by a second order differential equation. The problem in the boundary layer is reduced from a two point boundary value problem to a one point boundary value problem by transforming the governing equation into the Riccati equation. The Riccati equation is easily integrated with standard numerical procedures. The integration process yields the effective admittance of the wall-boundary layer combination. The acoustic field in the uniform flow is then determined for this effective admittance. Further complications imposed by the boundary layer are thus eliminated. The simplicity of the technique allows calculation of the propagation and decay constants in a circular duct over a wide range of parameters and duct modes.  相似文献   

6.
The effects of a mean grazing flow on the energy exchanges involved in the interaction of a bias-flow acoustic liner with, respectively, incident sound and boundary layer turbulence are contrasted. The analysis of model problems which make use of a line vortex to simulate large scale, unsteady boundary layer structures indicates that, whereas acoustic waves may be effectively attenuated, dissipation caused by “jetting” in the apertures of the liner can result in a net transfer of energy from the mean flow to the turbulence in the boundary layer.  相似文献   

7.
The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller.  相似文献   

8.
A voice production model is created in this work by considering essential aerodynamic and acoustic phenomena in human voice production. A precise flow analysis is performed based on a boundary-layer approximation and the viscous-inviscid interaction between the boundary layer and the core flow. This flow analysis can supply information on the separation point of the glottal flow and the thickness of the boundary layer, both of which strongly depend on the glottal configuration and yield an effective prediction of the flow behavior. When the flow analysis is combined with the modified two-mass model of the vocal fold [Pelorson et al. (1994). J. Acoust. Soc. Am. 96, 3416-3431], the resulting acoustic wave travels through the vocal tract and a pressure change develops in the vicinity of the glottis. This change can affect the glottal flow and the motion of the vocal folds, causing source-filter coupling. The property of the acoustic feedback is explicitly expressed in the frequency domain by using an acoustic tube model, allowing a clear interpretation of the coupling. Numerical experiments show that the vocal-tract input impedance and frequency responses representing the source-filter coupling have dominant peaks corresponding to the fourth and fifth formants. Results of time-domain simulations also suggest the importance of these high-frequency peaks in voice production.  相似文献   

9.
The focus of this work is to extend the theory of boundary layer induced acoustic streaming to include cylindrical geometries and to highlight the effects of boundary layer induced streaming on flow velocities in micro-scale channels. The work presented here includes the development of a model for streaming in a cylindrical channel by a method of successive approximations. The validity of this model is established by comparison with a well-established model for streaming between parallel plates of infinite extent. This is followed by a discussion on the importance of employing a cylindrical solution including boundary layer induced streaming for the analysis of streaming in micro-scale channels.  相似文献   

10.
This paper describes a broadband noise prediction scheme for wind turbines. The source mechanisms included in the method are unsteady lift noise, unsteady thickness noise, trailing edge noise and the noise from separated flow. Special methods have been developed to model the inflow turbulence from the atmospheric boundary layer and acoustic radiation to the geometric near field of the rotor. Predictions are compared with measurements on 20 m and 80 m diameter wind turbines. The results show that the turbulence length scale in the atmospheric boundary layer is too large to give the measured noise levels. Very good agreement is obtained between predictions and measurements if the turbulence length scale is taken to be equal to the blade chord.  相似文献   

11.
The influence of unsteady wall shear stress on boundary layer noise and wall pressure fluctuations is discussed. It is argued that in the acoustic analogy theory of boundary layer noise the surface shear stress “dipole” characterizes acoustic propagation and not generation. Analytical results are presented in support of this view which, in addition, indicate that the effect of the surface dipole is to dininish rather than enhance boundary layer radiation at low Mach numbers.  相似文献   

12.
13.
选择典型高速流动条件,基于线性稳定性理论研究了不同前缘几何特征对典型大后掠角平板钝三角翼外形高速边界层流动稳定性及转捩的影响.研究表明,椭前缘(截面为椭圆)形状的变化仅影响前缘附近的流场特征和边界层流动稳定性;前缘截面长短轴比(形状因子)变大,前缘形状变尖,则横流速度变大,扰动波增长率变大;对于横流模态和第1模态,不同...  相似文献   

14.
In this Letter we discuss theoretically the instabilities of thermotropic freely standing smectic- A films under shear flow [3]. We show that, in Couette geometry, the centrifugal force pushes the liquid crystal toward the outer boundary and induces smectic layer dilation close to the outer boundary. Under strong shear, this effect induces a layer buckling instability. The critical shear rate is proportional to 1/sqrt[d], where d is the thickness of the film.  相似文献   

15.
We present the theory of the multi--solutions of the variational problem for the upper bounds on the convective heat transport in a heated from below horizontal fluid layer with rigid lower boundary and stress-free upper boundary. A sequence of upper bounds on the convective heat transport is obtained. The highest bound is between the bounds for the case of a fluid layer with two rigid boundaries and for the case of a fluid layer with two stress-free boundaries. As an additional result of the presented theory we obtain small corrections of the boundary layer thicknesses of the optimum fields for the case of fluid layer with two rigid boundaries. These corrections lead to systematically lower upper bounds on the convective heat transport in comparison to the bounds obtained in [5]. Received 29 September 1999  相似文献   

16.
Results are reported on an assessment of the application of coherent Doppler and cross-correlation techniques to measure nearbed boundary layer flow. The approaches use acoustic backscattering from sediments entrained into the water column from the bed, to obtain high-resolution profiles of the nearbed hydrodynamics. Measurements are presented from a wave tunnel experiment in which sediment was entrained by unidirectional, oscillatory, and combined flows. The data collected have been used to evaluate the capability of the two flow techniques to measure boundary layer mean, turbulent, and intrawave velocity profiles. Further, the backscattered signal has been used to measure suspended sediment concentration profiles, which have been combined with the velocity profiles to obtain high-resolution measurements of boundary layer sediment flux.  相似文献   

17.
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.  相似文献   

18.
《Physica A》2006,371(2):674-682
We study the phase transition on a highway in a modified anisotropic continuum model with an on-ramp, which is recently developed by Gupta and Katiyar (J. Phys. A: Math. Nucl. Gen. 38 (2005) 4069]. To investigate whether this model can describe several distinct traffic states that are identified from real-traffic data [Kerner and Rehborn, Phys. Rev. Lett. 79 (1997) 4030; Kerner, Phys. Rev. Lett. 81 (1998) 3797], we carry out numerical simulations with an open boundary condition. The observed transition between free flow and various types of congested flow such as localized clusters, stop-and-go traffic and different kinds of synchronized traffic flow is obtained by applying a triggering pulse through an on-ramp in our simulation.We present the phase diagram for three representative values of the upstream boundary flux and for the whole range of the on-ramp flux. Several states like pinned localized cluster, triggered stop-and-go, recurring hump state, the oscillatory congested traffic and the homogeneous congested traffic are observed in phase transition from free flow to traffic-jam state. The phase diagram for our model near on-ramp is consistent with the results obtained by Lee et al. [Phys. Rev. E 59(5) (1999) 5101]. The results suggest that the modified model is able to describe all the three phases of traffic-flow theory developed by Kerner [Physica A 333 (2004) 379].  相似文献   

19.
Noise and performance tests were conducted on three low tip speed, half-stage, axial flow fans to determine the nature of the vortex shedding noise mechanism. Each fan was 356 mm in diameter and had eight equally spaced, variable pitch blades. The noise measurements were made in a free field environment and the fan back pressure and speed were varied during the tests. An acenaphthene coating on the blades was used to determine the regions of laminar and turbulent flow.Vortex shedding can be a significant source of noise when the fan is operated in a lightly loaded condition. Essentially it is due to instabilities in the laminar boundary layer on the suction side of the blade where these instabilities are in the form of Tollmien-Schlichting (T-S) waves. These instabilities interact with the trailing edge of the blade and generate acoustic waves which radiate from the trailing edge and form a feedback loop with the source of the instabilities. Vortex shedding noise can contribute as much as 5 dB in overall noise level and up to 22 dB at higher frequencies (8–14 kHz).Serrations located at the leading edge, at the mid-chord, or near the trailing edge on the suction side were found to reduce the vortex shedding noise significantly. The mid-chord location was found to be the most satisfactory because, as well as eliminating the noise, the serrations provided a 3% improvement in peak efficiency. This improvement occurred because separation of the laminar boundary layer was prevented on the suction side. On the other hand, serrations placed at the other two locations tended to degrade fan performance.  相似文献   

20.
飞机机体表面的开孔设计会形成空腔结构,产生空腔流致噪声。空腔噪声的控制需要彻底认识其流动和噪声机理。以飞机的功能性开孔为例,通过半经验公式分析了其空腔噪声频率随速度的变化规律,预测了出现流声共振的工况。空腔发生流声共振时,特定频率的纯音噪声会被放大。为此,采用脱体涡模拟方法开展了开孔结构流声共振的三维非定常数值计算,分析了其流场和声场特性。其中,数值方法的准确性通过圆形空腔标模计算进行验证。结果表明,在一定速度下剪切层内的扰动将诱发空腔深度方向声模态,出现流声共振现象。此时,剪切层表现为强烈的周期性上下拍动,空腔底部和后缘区域的局部压力脉动幅值较大,声波主要由空腔后缘向上游方向辐射,上游噪声大于下游。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号