首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The purpose of this study was to develop a theoretical model for the flow-induced vibration of viscoelastically supported rectangular plates. In particular, the influence of the dynamic mechanical properties of the elements supporting the plate was investigated. The case of a homogeneous rectangular plate supported along all four edges by a complex viscoelastic element was treated. The Rayleigh-Ritz method was used applying beam functions as the trial functions. This approach ensured a fast convergence rate, which is advantageous for vibration analysis of high order modes. The flow-induced vibration of the plate was calculated using the Corcos model for the surface pressure loading. The results suggest that there is an optimal support stiffness that minimizes the flow-induced vibration response of the plate.  相似文献   

2.
3.
A theoretical model based on Hamilton's principle and spectral analysis is used to study the non-linear free vibration of hybrid composite plates made of Glare 3, a new aircraft structural material. It consists of alternating layers of metal- and fibre-reinforced composites. In previous work, the theoretical model has been used to calculate the first non-linear mode of fully clamped rectangular composite fibre-reinforced plastic (CFRP) laminated plates. This study concerns determination of the linear dynamic properties of the Glare 3 hybrid composite rectangular panel (G3HCRP) such as natural frequencies and mode shapes. The theoretical model is used to calculate the fundamental non-linear mode shape and associated flexural behaviour of the fully clamped G3HCRP. A series of experimental investigations have been conducted using a G3HCRP in order to determine linear dynamic properties. The response due to random excitation was investigated and the experimental measurements are analyzed and discussed. Comparisons are made with finite element predictions and response estimates given by the ESDU method, the latter being a “design guide” approach used by industry. Concerning the non-linear analysis, the results are given for various plate aspect ratios and vibration amplitudes, showing a higher increase of the induced bending stress near the clamps at large deflections. Comparisons between the dynamic behaviour of an isotropic plate and G3HCRP at large vibration amplitudes are presented and good results are obtained.  相似文献   

4.
Electronic speckle pattern interferometry (ESPI) is a full field, non-contact technique for measuring the surface displacement of a structure subjected to static loading or, especially, to dynamic vibration. In this article we employ an optical system called the amplitude-fluctuation ESPI with out-of-plane and in-plane measurements to investigate the vibration characteristics of piezoceramic plates. Two different configurations of piezoceramic plates, namely the rectangular and the circular plates, are discussed in detail. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Because the clear fringe patterns will be shown only at resonant frequencies, both the resonant frequencies and the corresponding mode shapes are obtained experimentally at the same time by the proposed AF-ESPI method. Excellent quality of the interferometric fringe patterns for both the in-plane and out-of-plane vibration mode shapes is demonstrated. The resonant frequencies of the piezoceramic plates are also measured by the conventional impedance analysis. From experimental results, we find that the out-of-plane vibration modes (type A) with lower resonant frequencies cannot be measured by the impedance analysis and only the in-plane vibration modes (type B) will be shown. However, both the out-of-plane (bending) and in-plane (extensional) vibration modes of piezoceramic plates are obtained by the AF-ESPI method. Finally, the numerical finite element calculations are also performed, and the results are compared with the experimental measurements. It is shown that the numerical calculations and the experimental results agree fairly well for both the resonant frequencies and the mode shapes.  相似文献   

5.
A previously developed analysis of the flexural vibration of isotropic rectangular plates is extended to include the presence of a membrane stress system. The method of analysis is the Rayleigh-Ritz method and Mindlin plate theory is used which takes into account effects which are disregarded in the classical plate theory. As in the aforementioned earlier analysis the spatial variations of the deflection and two rotations over the plate middle surface are based on the use of Timoshenko beam functions. The membrane stress system comprises biaxial direct stress plus in-plane shearing stress and is uniform throughout the plate. Numerical results are presented for a number of types of plate and of applied stress which show the manner of variation of the frequencies of vibration as the intensity of stress changes. This manner of variation is similar in form to that demonstrated elsewhere by analyses based on the use of the classical plate theory but the magnitudes of the present calculated frequencies are considerably reduced for moderately thick plates.  相似文献   

6.
Most of the work done on vibration of plates published in the literature includes analytical and numerical studies with few experimental results available. In this paper, an optical system called the amplitude-fluctuation electronic speckle pattern interferometry for the out-of-plane displacement measurement is employed to investigate the vibration behavior of plates with rounded corners and with chamfers. The boundary conditions are traction free along the circumference of the plate. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally using the present method. Numerical calculations by finite element method are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. It is interesting to note that the mode number sequences for some resonant modes are changed. The transition of mode shapes from the square plate to the circular plate is also discussed.  相似文献   

7.
This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.  相似文献   

8.
Orthogonally generated polynomial functions are used in the Lagrangian multiplier method to study the free, flexural vibration problem of point supported, thin, flat, rectangular plates. The analysis applies to isotropic and specially orthotropic plates having any combination of clamped, simply supported or free edges with arbitrarily located point supports and to plates which are continuous over line supports parallel to the plate edges. Numerical results are presented for a number of specific problems, illustrating the accuracy and versatility of the approach, and which include natural frequencies and nodal patterns for a point supported plate which is continuous over two perpendicular line supports.  相似文献   

9.
An extended Rayleigh-Ritz method is presented for solving vibration problems of a polygonal plate having orthogonal straight edges. The polygonal plate is considered as an assemblage of several rectangular plates. For each element rectangular plate, the transverse displacement is approximated by interpolation functions corresponding to unknown displacements and slopes at the discrete points which are chosen along the edges, and series of trial functions which satisfy homogeneous artificial boundary conditions. By minimizing the energy functional corresponding to the assumed displacement function, the dynamic stiffness matrix of the element rectangular plate, which is similar to that obtained in the finite element method, is derived. The dynamic stiffness matrix of the whole system is obtained by summing up those of the element rectangular plates. Numerical results are presented for the natural frequencies and mode shapes of cantilever L-shaped and T-shaped plates.  相似文献   

10.
A simple approximate formula for the natural frequencies of flexural vibration of isotropic plates, originally developed by Warburton using characteristic beam functions in Rayleigh's method, is modified to apply to specially orthotropic plates and extended to include the effect of uniform, direct inplane forces. The initial buckling problem is treated simply by equating the frequency expression to zero. The approach permits the ready determination of reasonably accurate natural frequencies and/or buckling loads for a given plate involving any combination of free, simply supported or clamped edges, without requiring the aid of a sophisticated calculating device or a knowledge of plate, vibration or buckling theory. To illustrate the applicability and accuracy of the approach, numerical results for a number of specific plate problems are presented.  相似文献   

11.
The work described in this paper constitutes the theoretical part of a theoretical and experimental study of the post-buckling and vibration of simply supported rectangular plates having slight initial curvature (geometrical imperfection) and subject to uni-axially applied, in-plane, compressive loads. The experimental part, and the comparison with theoretical predictions, is given in a second paper. The Rayleigh-Ritz approach, with a deflection function formulation for both the in- and out-of-plane behaviour of the plates, is used since this permits the convenient modelling of various types of in-plane boundary conditions, including those encountered in the experimental study. A concept of connection coefficients, introduced to reduce the computational effort involved, is described. In order to illustrate the applicability of the theoretical approach, a number of square plates having various sets of in-plane boundary conditions and degrees of initial imperfection are treated. Graphical results are presented showing the variation of the lateral central deflection and the fundamental natural frequency of vibration with applied in-plate loads varying from zero to several times the lowest critical buckling load. Where possible, comparison is made with values available in the literature and excellent agreement is achieved. The results presented appear to suggest that an approximately linear relationship exists between a load-frequency parameter and the central deflection of the plates considered, for a substantial in-plane loading range.  相似文献   

12.
This paper presents an experimental and theoretical study of flexural symmetric vibration modes of a linear elastic plate. A laser interferometer is used as detector of the free vibration of a rectangular parallelepiped-shaped aluminium plate. The vibration spectrum gives the lowest natural frequencies of the sample. Assumption that the vibration of the plates may be described by some approximate theories is proven to be inconsistent. The Ritz method, with products of powers of the co-ordinates as basis functions, is applied to obtain the lowest flexural natural frequencies. Three-dimensional solutions are obtained, unlike those provided by simpler theories. The experimental results are compared with the numerical predictions and a good agreement is obtained. Finally, forced motion is applied to the centre of the plate and the out-of-plane and in-plane displacement components for the first symmetric mode are measured. A good fit of the calculated values to the experimental values is found.  相似文献   

13.
In a previous series of papers, a semi-analytical model based on Hamilton's principle and spectral analysis has been developed for geometrically non-linear free vibrations occurring at large displacement amplitudes of clamped-clamped beams and fully clamped rectangular homogeneous and composite plates. In Part I of this series of papers, concerned with geometrically non-linear free and forced vibrations of various beams, a practical simple “multi-mode theory”, based on the linearization of the non-linear algebraic equations, written in the modal basis, in the neighbourhood of each resonance has been developed. Simple explicit formulae, ready and easy to use for analytical or engineering purposes have been derived, which allows direct calculation of the basic function contributions to the first three non-linear mode shapes of the beams considered. Also, various possible truncations of the series expansion defining the first non-linear mode shape have been considered and compared with the complete solution, which showed that an increasing number of basic functions has to be used, corresponding to increasingly sized intervals of vibration amplitudes; starting from use of only one function, i.e., the first linear mode shape, corresponding to very small amplitudes, for which the linear theory is still valid, and ending by the complete series, involving six functions, corresponding to maximum vibration amplitudes at the beam middle point up to once the beam thickness. For higher amplitudes, a complementary second formulation has been developed, leading to reproduction of the known results via the solution of reduced linear systems of five equations and five unknowns. The purpose of this paper is to extend and adapt the approach described above to the geometrically non-linear free vibration of fully clamped rectangular plates in order to allow direct and easy calculation of the first, second and higher non-linear fully clamped rectangular plate mode shapes, with their associated non-linear frequencies and non-linear bending stress patterns. Also, numerical results corresponding to the first and second non-linear modes shapes of fully clamped rectangular plates with an aspect ratio α=0·6 are presented. Data concerning the higher non-linear modes, the aspect ratio effect, and the forced vibration case will be presented later.  相似文献   

14.
This paper presents three-dimensional free vibration analysis of isotropic rectangular plates with any thicknesses and arbitrary boundary conditions using the B-spline Ritz method based on the theory of elasticity. The proposed method is formulated by the Ritz procedure with a triplicate series of B-spline functions as amplitude displacement components. The geometric boundary conditions are numerically satisfied by the method of artificial spring. To demonstrate the convergence and accuracy of the present method, several examples with various boundary conditions are solved, and the results are compared with other published solutions by exact and other numerical methods based on the theory of elasticity and various plate theories. Rapid, stable convergences as well as high accuracy are obtained by the present method. The effects of geometric parameters on the vibrational behavior of cantilevered rectangular plates are also investigated. The results reported here may serve as benchmark data for finite element solutions and future developments in numerical methods.  相似文献   

15.
This paper presents exact solutions for vibration of rectangular plates with an internal line hinge. The rectangular plate is simply supported on two parallel edges and the remaining two edges may take any combination of support conditions. The line hinge is perpendicular to the two simply supported parallel edges. The Lévy type solution method and the state-space technique are employed in connection with the first order shear deformation plate theory (FSDT) to study natural vibration of rectangular plates with an internal line hinge. In particular, exact vibration frequencies are obtained for rectangular plates of different aspect ratios and edge support conditions. The influence of the internal line hinge on the vibration behavior of rectangular plates is studied.  相似文献   

16.
While the subject of free vibration analysis of the completely free rectangular plate has a history which goes back nearly two centuries it remains a fact that most theoretical solutions to this classical problem are considered to be at best approximate in nature. This is because of the difficulties which have been encountered in trying to obtain solutions which satisfy the free edge conditions as well as the governing differential equation. In a new approach to this problem, by using the method of superposition, it is shown that solutions which satisfy identically the differential equation and which satisfy the boundary conditions with any desired degree of accuracy are obtained. Eigenvalues of four digit accuracy are provided for a wide range of plate aspect ratios and modal shapes. Exact delineation is made between the three families of modes which are characteristic of this plate vibration problem. Accurate modal shapes are provided for the response of completely free square plates.  相似文献   

17.
A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and non-linear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boudary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.  相似文献   

18.
In this paper, the free vibrations of rectangular Mindlin plates with variable thickness in one or two directions are investigated. The thickness variation of the plate is continuous and can be represented by a power function of the rectangular co-ordinates. A wide range of tapered rectangular plates can be described by giving various index values to the power function. Two sets of new admissible functions are developed, respectively, to approximate the flexural displacement and the angle of rotation due to bending of the plate. The eigenfrequency equation is obtained by using the Rayleigh-Ritz method. The complete solutions of displacement and angle of rotation due to bending for a tapered Timoshenko beam (a strip taken from the tapered Mindlin plate in some direction) under a Taylor series of static load have been derived, which are used as the admissible functions of the rectangular Mindlin plates with taper thickness in one or two directions. Unlike conventional admissible functions which are independent of the thickness variation of the plate, the static Timoshenko beam functions presented in this paper are closely connected with the thickness variation of the plate so that higher accuracy and more rapid convergence can be expected. Some numerical results are furnished for both truncated Mindlin plates and sharp-ended Mindlin plates. On the basis of convergence study and comparison with available results in literature, it is shown that the first few eigenfrequencies can be obtained with quite satisfactory accuracy by using only a small number of terms of the static Timoshenko beam functions.  相似文献   

19.
基于ZnO压电薄膜的弯曲振动硅微压电超声换能器的研究   总被引:1,自引:0,他引:1  
对所研制的硅微压电超声换能器(PMUT)的振动特性进行了研究分析。对硅微压电超声换能的振动膜薄板的厚度相对于薄板的尺度(边长)而言较薄的情况,理论分析与实验结果均表明残余应力对换能器的谐振频率影响较大:不考虑残余应力的理论分析得出的换能器谐振频率与器件的实验测量的结果相差较大,而考虑残余应力的分析给出的谐振频率结果与实验结果是符合的。本文还对所制作的硅微压电超声换能器的谐振频率及导纳进行测量,并给出其等效电路参数。其中振动膜边长为1mm的换能器的谐振频率为71.25 kHz。最后对其进行了简单接收发射实验,测得谐振频率处的接收灵敏度为-201.6 dB(ref 1 V/μPa),发射电压响应约为137 dB(ref 1 μPa·m/V)。  相似文献   

20.
胡吉英  李朝晖 《应用声学》2019,38(4):580-588
本文提出利用长度方向极化的压电材料的33模态来实现半主动减振。论文以横梁为例,通过理论分析和有限元仿真,对比研究了当压电材料分别连接31, 33两种模态对应的最佳分流电路时,压电材料两种模态在横梁的共振频率附近的减振效果。结果表明33模态比31模态具有更高的减振效率。此外,鉴于33模态存在极化长度有限的问题,仿真分析了压电材料的尺寸和位置对减振效果的影响。在此基础之上,提出了一个利用压电材料33模态的多模态减振的组合设计,对横梁的前三个模态起到了很好地减振作用。相对31模态而言,横梁的每个振动模态均有约15dB的减振提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号