首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the given work the adsorption properties of molecule curcumin((1 E,6 E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) on CNT(8,0-6) nanotube were investigated by the density functional theory(DFT) in the solvent water for the first time. The non-bonded interaction effects of compounds curcumin and CNT(8,0-6) nanotube on the electronic properties, UV/Vis spectra, chemical shift tensors and natural charges were determined and discussed. The electronic spectra of the compound curcumin and the complex CNT(8,0-6)/curcumin in the solvent water were calculated by time dependent density functional theory(TD-DFT) for investigation of the maximum wavelength value of molecule Curcumin before and after the non-bonded interaction with the CNT(8,0-6) nanotube and molecular orbitals involved in the formation of absorption spectrum of the complex CNT(8,0-6)/curcumin at maximum wavelength.  相似文献   

2.
Possible ways for manipulating carbon nanotubes (CNTs) with cyclic supermolecules are studied using density functional theory. Electronic structure calculations with structure optimizations have been performed for the (4,4) and (8,0) single-walled carbon nanotubes (SWNTs) complexed with crown ethers as well as for the (4,0) SWNT with beta-cyclodextrin. A slight polarization of charge in both the nanotube and the supermolecule is observed upon rotaxane complexation, but the interaction is mainly repulsive, and the systems stay 2.8-3.5 A apart. The supermolecule does not affect the electronic band structure of the nanotube significantly within such a configuration. The situation differs noticeably for chemically cross-linked SWNTs and crown ethers, where a peak arises at the Fermi energy in the density of states. As a result, the band gap of semiconducting CNT(8,0) (0.5 eV) vanishes, and a new conduction channel opens for the metallic CNT(4,4).  相似文献   

3.
A computational study based on DFT calculations was performed to investigate the effect of phosphorodimethylamidocyanidate (PDMAC) molecule adsorption on the surface of pure and Ga-doped (4,0), (5,0), (6,0), (7,0), and (8,0) zigzag boron-nitride nanotubes (BNNTs). Our results reveal that the interactions between PDMAC molecule and (5,0), (6,0), (7,0), and (8,0) BNNTs are weak. However, according to the AIM and NBO analysis the PDMAC exhibits strong affinity towards the (4,0) BNNT with appreciable adsorption energy (?111.03 kJ/mol). The adsorption of PDMAC molecule onto the (4,0) BNNT affect the electronic conductance, hypsochromic, and hyperchromic shifts in the calculated UV-Visible spectrum. Based on the obtained results, it is expected that the pristine and Ga-doped (4,0) BNNT could be promising candidates in gas sensor devices for detecting the PDMAC molecule.  相似文献   

4.
It has been demonstrated that hydrogen adsorption has an effect on the electronic structure of gold nanoparticles. The physicochemical properties of separate gold nanoparticles have been studied under an ultrahigh vacuum scanning tunneling microscope. The structure and electronic structure of gold–hydrogen clusters were modeled by the quantum-chemical density functional theory method. Hydrogen adsorption onto gold nanoparticles 4–5 nm is size at room temperature was experimentally revealed, and the lower limit of 1.7 eV for the Au–H bond energy was determined. The interaction of hydrogen with gold leads to a considerable rearrangement of the electronic subsystem of nanoparticles. The experimentally observed effects were supported by quantum-chemical calculations. The rearrangement mechanism is related to strong correlations in the electronic subsystem.  相似文献   

5.
The van der Waals vibrational states and the structure of the vibronic spectrum of s-tetrazine-argon complex have been studied by the ab initio methods. The potential-energy surface of the ground S(0) electronic state of the complex has been constructed by fitting the analytical many-body expansion to a large set of the interaction energy values computed using the second-order M?ller-Plesset perturbation theory combined with the standard aug-cc-pVDZ basis set. The equilibrium structure of the complex found is that with argon located above the tetrazine ring at a distance of 3.394 A. The calculated dissociation energy of 354 cm(-1) is compatible with the experiment. The van der Waals energy spectrum calculated from the potential-energy surface is explained analyzing a correlation with a simpler energy spectrum of benzene-argon. A new assignment of the S(0)-S(1) vibronic spectrum is proposed on the basis of the rigorous selection rules, vibrational energy levels in S(0) and S(1) states and vibronic transition intensities calculated from the electronic transition dipole moment surfaces.  相似文献   

6.
We report the first spectroscopic study of a complex consisting of a rare earth atom in combination with ammonia. Using two-color resonance-enhanced multiphoton ionization (REMPI) spectroscopy, the lowest energy electronic transition of YbNH(3) has been found in the near-infrared. The spectrum arises from a spin-forbidden transition between the (1)A(1) ground electronic state and the lowest (3)E excited electronic state. The transition is metal centered and approximately correlates with the Yb 6s6p (3)P ← 6s(2) (1)S transition. The observation of clear spin-orbit structure in the spectrum confirms the C(3v) symmetry of YbNH(3). Vibrational structure is also observed in the REMPI spectrum, which is dominated by excitation of the Yb-N stretching vibration.  相似文献   

7.
The introduction of a second metal, gold, into a nickel matrix can effectively improve the catalytic performance and thermal stability of the catalysts toward steam reforming of methane. To investigate the effect of Au on the adsorption properties and electronic structure of the Ni(111) surface, we chose CO as a probe molecule and examined CO adsorption on various Au/Ni surfaces. It was revealed that Au addition weakened the absorbate–substrate interactions on the Ni(111) surface. With increasing gold concentration, the binding energy declines further. The variation of the binding energies has been interpreted by exploring the electronic structure of surface nickel atoms. The effect of gold can be quantitatively characterized by the slopes of the fitting equations between the binding energy and the number of gold atoms surrounding the adsorption site. Our results show that the binding energy at top sites can be approximately estimated by counting the number of surrounding gold atoms. On one specific surface, the relative magnitude of the binding energy can be simply judged by the distance between gold and the geometrical center of the adsorption site. This empirical rule holds true for C, H, and O adsorption on the Au/Ni surface. It may be applicable to a system in which a doped atom of larger atomic size is incorporated into the host metal surface by forming a surface alloy.  相似文献   

8.
Single and double photoionization spectra of formaldehyde have been measured at 40.81 and 48.37 eV photon energy and the spectrum of the doubly charged cation has been interpreted using high-level electronic structure calculations. The adiabatic double-ionization energy is determined as 31.7+/-0.25 eV and the vertical ionization energy is 33 eV. The five lowest excited electronic states are identified and located. The potential-energy surfaces of the accessible states explain the lack of stable H2CO2+ dications and the lack of vibrational structure. The experimental double-ionization spectrum can be decomposed into two distinct contributions, one from direct photoionization and the second from indirect double photoionization by an inner-valence shell Auger effect.  相似文献   

9.
1 计算方法在本文中我们利用推广的SSH 模型,采用自洽迭代的数值计算方法,得到C_(60)分子基态、激发态的电子能谱和几何结构.这与分子轨道和密度泛函理论的计算结果是极相符的.在研究导电聚合物,特别是trans-polyacetylene 链的电子态时,苏武沛等提出了著名的SSH 模型,从理论上阐明了非线性元激发(孤子、极化子、双极化子)的物理图象.鉴于C_(60)分子与PA 链有某些相似之处,实验证实了C_(60)分子中的每个C 原子,通过三个σ电  相似文献   

10.
The electronic energies among different possible structures of 4-hydroxyacetanilide (paracetamol) (PA) molecule, were calculated using INDO method and it has been concluded that its structure has C(s) point group symmetry of the cis-form. The ionization potential, electron affinity, dipole moment and binding energy have been calculated. The calculated electronic transitions of the cis-form of PA using SCF-CI method have good coincidence with the electronic absorption spectrum. The temperature effect on the electronic spectrum of PA confirms the presence of one conformer only. The electronic spectra of PA compound were studied in different polar- and non-polar solvents and the hydrogen bonding as well as the orientation energies of the polar solvents were determined from the mixed solvents studies. Complexes of PA with various metal ions such as, Cu(II), Zn(II) or Fe(II) ions of ratio 2:1, respectively, have been prepared and their structure has been confirmed by elemental analysis, atomic absorption spectra, IR spectra and (1)H NMR spectra and finally it can be concluded that the structure of the complexes has C2h point group symmetry in which two PA molecules are chelated to any one of the metal ions, Cu(II), Zn(II) and Fe(II) ions.  相似文献   

11.
用INDO系列方法对C60进行几何构型优化,得到D3d对称性的构型,表明C60确实发生了Jahn-Teller畸变,导致单键变短,双键变长,形成10种键,6种不等同碳原子,并以此构型为基础,计算了C60的电子光谱,与实验结果吻合;同时对光谱进行了理论指认;最后对C60的3种构型:D5d,D3d,D2h的几何构型、能量、光谱和反应特性进行了分析、比较和总结。  相似文献   

12.
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O(?-)) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states ((3)B(2) and (3)B(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density functional theory (DFT). Spectral simulations have been carried out for the triplet states based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the (3)B(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the (3)B(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the (3)B(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The (1)A(1) state is the lowest electronic state of OXA, and the electron affinity (EA) of OXA is 1.940 ± 0.010 eV. The (3)B(2) state is the first excited state with an electronic term energy of 55 ± 2 meV. The widths of the vibronic peaks of the X? (1)A(1) state are much broader than those of the a? (3)B(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cyclopropanone. The simulation of b? (3)B(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the (3)B(1) state is 0.883 ± 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O(?-) reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the X? (3)A' state of AC. The ground ((2)A') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.  相似文献   

13.
Recently we reported noncovalent functionalization of nanotubes in an aqueous medium with ionic liquid-based surfactants, 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), resulting in positively charged single-wall carbon nanotube (SWNT)-1,2 composites. Thiolation of SWNTs with 2 provides their self-assembly on gold as well as templating gold nanoparticles on SWNT sidewalls via a covalent -S-Au bond. In this investigation, we studied the electronic structure, intermolecular interactions, and packing within noncovalently thiolated SWNTs and also nanotube alignment in the bulk of SWNT-2 dried droplets and self-assembled submonolayers (SAMs) on gold by high-resolution X-ray photoemission spectroscopy (HRXPS), C K-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). HRXPS data confirmed the noncovalent nature of interactions within the nanocomposite of thiolated nanotubes. In PM-IRRAS spectra of SWNT SAMs on gold, the IR-active vibrational SWNT modes have been observed and identified. According to PM-IRRAS data, the hydrocarbon chains of 2 are oriented with less tilt angle to the bare gold normal in a SAM deposited from an SWNT-2 dispersion than those of 1 deposited from an SWNT-1 dispersion on the mercaptoethanesulfonic acid-primed gold. For both the dried SWNT-2 bulk and the SWNT-2 SAM on gold, the C K-edge NEXAFS spectra revealed the presence of CH-pi interactions between hydrocarbon chains of 2 and the pi electronic nanotube structure due to the highly resolved vibronic fine structure of carbon 1s --> R*/sigma*C-H series of states in the alkyl chain of 2. For the SWNT-2 bulk, the observed splitting and upshift of the SWNT pi* orbitals in the NEXAFS spectrum indicated the presence of pi-pi interactions. In the NEXAFS spectrum of the SWNT-2 SAM on gold, the upshifted values of the photon energy for R*/sigma*C-H transitions indicated close contact of 2 with nanotubes and with a gold surface. The angle-dependent NEXAFS for the SWNT-2 bulk showed that most of the molecules of 2 are aligned along the nanotubes, which are self-organized with orientation parallel to the substrate plane, whereas the NEXAFS for the SWNT-2 SAM revealed a more normal orientation of functionality 2 on gold compared with that in the SWNT-2 bulk.  相似文献   

14.
In this work we have investigated the electronic structure and the molecular orientation of (t-Bu)(4)PcMg (tetra-t-butyl magnesium phthalocyanine) on polycrystalline and single crystalline gold substrates using photoemission spectroscopy and x-ray absorption spectroscopy, and we compare the results to the unsubstituted PcCu (copper phthalocyanine). The C 1s photoemission spectrum is described similar to unsubstituted relatives with an additional component for the aliphatic substituents. The variation of the excitation energy causes distinct differences in the shape of the C 1s spectrum, which is very useful for the analysis of the molecular orientation in the uppermost layer. It is shown that despite of the sterically demanding substituents, ordered sublimed films of (t-Bu)(4)PcMg are accessible, the orientation of the molecules, however, is different from the orientation of the unsubstituted relatives.  相似文献   

15.
YANG E  LI Jun-Qian  CHEN Yong 《结构化学》2010,29(12):1788-1791
We report a theoretical study on the electronic structures of O2 chemisorbed on a(8,0) SWNT with different oxygen contents of 6.25,12.5 and 25%,respectively.On the basis of DFT calculations,we find that eight O2 molecules chemisorbed on the(8,0) SWNT aligned in the middle row of the circumference of the tube in proportional spacing way,is seen to become metallic,and a significant increase in conductivity is expected.There are different electronic structures of the functionalized systems related to different oxygen contents or O2 molecules' chemisorbed positions.  相似文献   

16.
Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.  相似文献   

17.
The structure and properties of borepine and substituted borepines have been studied theoretically at the B3LYP/6-311++G(d,p) level. The calculations include the frontier orbitals, vibrational analysis, optical properties, electronic spectrum analysis, aromaticity and thermodynamic. The effects of the substituent groups on the structure, electronic properties, ionization potential (IP), electron affinity (EA), and reorganization energy has been studied. Aromaticity of molecules has been explored based on NICS values and delocalization index. The NICS values indicated increasing of aromaticity in electron withdrawing substituents.  相似文献   

18.
The electronic structure of porphin and corrin complexes of cobalt differing with respect to the oxidation state of the central ion has been investigated by the MO-LCAO-SCF-CNDO method with the Kai-Nishimoto parameters for transition metals. On the basis of an analysis of the distribution of the electron density and the structure of the energy spectrum, it has been shown that the oxidation-reduction processes of the complexes are accompanied by restructuring of the energy spectrum, and the differences between the electronic structures of porphin and corrin complexes have been discussed. It has been established that cobalt(I) porphin has stronger nucleophilic properties than does cobalt(I) corrin. The electronic structure of hexacoordinate complexes in which an imidazole molecule and a molecule of L (L = H2O, CH3 +, CN) are axially coordinated has been calculated. The mechanisms of the dissociation of cobalt alkyl complexes and the differences between the processes of the heterolytic dissociation of porphin and corrin complexes have been discussed. It has been shown that the elimination of a CH3 + cation, which plays an important role in biomethylation reactions, is more favorable in corrin complexes.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 22, No. 4, pp. 400–409. July–August, 1986.  相似文献   

19.
Gas-phase experiments provide information which, in conjunction with results from electronic structure calculations, help to unravel the critical role relativistic effects play in many areas of transition-metal chemistry. Examples include the thermochemical data of gold halides in different oxidation states, the fascinating structural properties of gold(I) complexes, the dramatic effects of ligands on the ionization energy of gold, or the binding in cationic metal-carbene complexes. Furthermore, in the context of methane functionalization, special emphasis is paid to the chemistry of cationic metal-carbene complexes, and at uncovering the mechanistic details of important carbon-heteroatom coupling reactions. It is the interplay of conducting experiments of "isolated" molecules under well-defined conditions with reliable electronic structure calculations that has considerably improved our understanding of the role relativistic effects play in the context of transition-metal chemistry, catalysis, and beyond.  相似文献   

20.
The electronic spectrum of the UO(2) molecule has been determined using multiconfigurational wave functions together with the inclusion spin-orbit coupling. The molecule has been found to have a (5fphi)(7s), (3)Phi(2u), ground state. The lowest state of gerade symmetry,( 3)H(4g), corresponding to the electronic configuration (5f)(2) was found 3330 cm(-1) above the ground state. The computed energy levels and oscillator strengths were used for the assignment of the experimental spectrum in the energy range 17,000-19,000 and 27,000-32,000 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号