首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[MNCl2(PPh3)2] complexes (M = Re, Tc) react with N‐[(dialkylamino)(thiocarbonyl)]‐N′‐(2‐hydroxyphenyl)benzamidines (H2L1) with formation of neutral, five‐coordinate nitrido complexes of the composition [MN(L1)(PPh3)]. The products have distorted square‐pyramidal coordination spheres with each a tridentate, double‐deprotonated benzamidine and a PPh3 ligand in their basal planes.  相似文献   

2.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

3.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

4.
Pseudoelement Compounds. XI. [1] Investigations on the Coordination Behaviour of Cyanamidonitrate [NO2NCN]? With the ionic, potentially ambidentate ligand cyanamidonitrate complexes of the types [MX(PPh3)3], [MX(PPh3)2]2 (M?CuI, AgI) and trans-[Pt(H)X(PPh3)2] (X??[NO2NCN]?) are introduced. The new compounds are characterized by 1H NMR, 31P NMR, and IR spectroscopy. The crystal structures of [Cu(NO2NCN)(PPh3)2]2 and [Ag(NO2NCN)(PPh3)2]2 are reported. In the complexes [MX(PPh3)3] and trans-[Pt(H)X(PPh3)2] cyanamidonitrate is unidentately coordinated through the nitrile group end-on. In the dimeric complexes [MX(PPh3)2]2 the anion acts bidentately as a bridging ligand. Surprisingly, both coordinative bonds are formed through nitrogen atoms of the NCN group.  相似文献   

5.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

6.
A novel ligand, N,N′‐Bis‐[3‐(2‐nitrophenyl)‐allylidene]‐ethane‐1,2‐diamine (nca2en), and their corresponding copper(I) complexes, [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), have been synthesized and characterized by CHN analyses, 1H and 13C‐NMR, IR, and UV‐Vis spectroscopy. The crystal and molecular structures of [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), were determined by X‐ray crystallography from single‐crystal data. The coordination polyhedron about the copper(I) atom in the two complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for complex 1 and 2 (E1/2 = 0.55 and 0.95 V, respectively).  相似文献   

7.
The reactions of Vaska’s complex [IrCl(CO)(PPh3)2] with 2-(coumaryl-6-azo)imidazole (CZ-H) and its derivatives (CZ-X) have synthesized [Ir(CZ)(CO)(PPh3)2] and [Ir(CZ-X)(CO)(PPh3)2]. All the complexes have been characterized by FT-IR, UV-Vis, 1H NMR and FAB-MS spectroscopy. The structural confirmation has been done in one case, by a single crystal X-ray diffraction study, which shows a distorted square pyramidal geometry around the central Ir atom. The complexes are emissive at room temperature. The cyclic voltammetry of the complexes shows a metal centered irreversible oxidation and ligand centered quasireversible reduction couples. To get an insight into the electronic structure, absorption spectra and electrochemical properties, detailed calculations on all three complexes have been performed at the DFT level.  相似文献   

8.
The quinazoline‐type ligand 2‐(4‐diethylamino‐2‐hydroxyphenyl)‐4‐methyl‐1,2‐dihydroquinazoline 3‐oxide ( HL 1 ; H is the deprotonatable hydrogen) was prepared. Two 2‐D supramolecular complexes [Cu2( L 2 )2(NO3)2] ( 1 ) and [Ni2( L 2 )2(CH3COO)2] ( 2 ) ( L 2 = 1‐(2‐{[(E)‐(4‐diethylamino‐2‐hydroxybenzylidene]amino} phenyl)ethanone oxime) were synthesized using HL 1 and characterized by elemental analysis, spectroscopic methods, and single‐crystal X‐ray diffraction studies. It revealed that 1 had coordinated two nitrate ions whereas 2 had acetate ions. In the crystal structures, six‐coordinated Cu (II) complex 1 formed an infinite 2‐D and X‐shaped 3‐D supramolecular frameworks. Simultaneously, Ni (II) complex 2 assembled into wavy 2‐D networks. Furthermore, electrochemical properties and antimicrobial activities of all compounds were as well investigated. Afterwards, the electrophilic and nucleophilic attack sites identified by electrostatic potential (ESP) calculations confirmed that hydrogen bonds were observed in the optimized structure of the crystal, and the closest contact between the active atoms of both complexes was confirmed through Hirshfeld surface analysis and time‐dependent density functional theory (TD‐DFT) calculations.  相似文献   

9.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

10.
Complexes of general formula [ReOX2{(C5H4N)CH(O)CH2(C5H4N)}] (X?=?Cl,?I) were prepared by reaction of trans-[ReOCl3(PPh3)2] and trans-[ReOI2(OEt)(PPh3)2] with cis-1,2-di-(2-pyridyl)ethylene (DPE) in ethanol and benzene in air. The coordinated DPE ligand undergoes addition of water at the ethylenic carbon atoms, and the (C5H4N)CH(O)CH2(C5H4N) moiety acts as a uninegative terdentate N,O,N-donor ligand. X-ray crystal structures of both complexes have been determined and show distorted octahedral geometry at the rhenium(V) centre.  相似文献   

11.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

12.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

13.
Mixed‐ligands hydride complexes [RuHCl(CO)(PPh3)2{P(OR)3}] ( 2 ) (R = Me, Et) were prepared by allowing [RuHCl(CO)(PPh3)3] ( 1 ) to react with an excess of phosphites P(OR)3 in refluxing benzene. Treatment of hydrides 2 first with triflic acid and next with an excess of hydrazine afforded hydrazine complexes [RuCl(CO)(κ1‐NH2NHR1)(PPh3)2{P(OR)3}]BPh4 ( 3 , 4 ) (R1 = H, CH3). Diethylcyanamide derivatives [RuCl(CO)(N≡CNEt2)(PPh3)2{P(OR)3}]BPh4 ( 5 ) were also prepared by reacting 2 first with HOTf and then with N≡CNEt2. The complexes were characterized spectroscopically and by X‐ray crystal structure determination of [RuHCl(CO)(PPh3)2{P(OEt)3}] ( 2b ).  相似文献   

14.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

15.
Reactions of [Re(NPh)Cl3(PPh3)2] with N‐[(N′,N′‐dialkylamino)(thiocarbonyl)]benzamidines (H2R2tcb) (R2 = Et2, (CH2)2O(CH2)2) in methanol give mono‐chelates of the composition [Re(NPh)Cl2(PPh3)(HR2tcb)] as the sole products independent of the amount of the added H2R2tcb. Addition of a supporting base such as NEt3 results in hydrolysis of the Re=NPh bonds and partial hydrolysis of the thiocarbamoylbenzamidines. Orange‐brown, cationic oxorhenium(V) compounds of the formula [ReO(HR2tcb)2]Cl were isolated from such reaction mixtures in good yields, and the formation of small amount of the unusual sulfido/persulfido‐bridged ReV dimer [{ReO(HEt2tcb)}2(μ‐S)(μ‐S2)] give evidence for a considerable degree of ligand decomposition under such conditions. The products have been characterized by spectroscopic methods and X‐ray crystallography. Acidification of orange‐brown solutions of the five‐coordinate ReV oxo complex [ReO(HEt2tcb)2]Cl causes an immediate change of the color and deep blue crystals of the neutral, six‐coordinate [ReOCl(HEt2tcb)2] can be isolated from the resulting mixture. Alternatively, the product can be prepared by a ligand‐exchange protocol starting from (NBu4)[ReOCl4] and H2Et2tcb. The pH‐dependent isomerization between [ReO(HEt2tcb)2]Cl and [ReOCl(HEt2tcb)2] is reversible.  相似文献   

16.
[ReOCl3(PPh3)2] and [Re(NPh)Br3(PPh3)2] react at room temperature with equivalent amounts of N,N‐dialkyl‐N′‐benzoylthioureas (HR1R2btu) in CH2Cl2 under formation of the rhenium(V) complexes [ReOCl2(R1R1btu)(PPh3)] and [Re(NPh)Br2(R1R2btu)(PPh3)], respectively. The products are structurally analogous with the oxygen atoms of the benzoylthioureas binding in trans positions to the oxo or phenylimido ligands. Prolonged reaction times result in the reduction of the oxo compound by the released PPh3 and the formation of rhenium(III) complexes of the composition [ReCl2(PPh3)2(R1R2btu)], while such a second reaction path is excluded for the phenylimido compound. Phenylimido species with more than one N,N‐dialkyl‐N′‐benzoylthioureato ligand could not be isolated, even when a large excess of HR1R2btu was used during the reaction.  相似文献   

17.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

18.
The reactions of the potentially tridentate Schiff bases 2-[(2-hydroxyphenyl)iminomethyl]phenol (H2ono) and 2-(2-aminobenzylideneimino)phenol (H3onn) with trans-[ReOBr3(PPh3)2] were studied, and the complexes [ReIIIBr(PPh3)2(ono)] (1) and [ReVBr(PPh3)2(onn)]Br (2) were isolated. In 1ono acts as a dianionic tridentate ligand, and in 2onn is coordinated as a tridentate trianionic imido-imino-phenolate. The complex [ReI(CO)3(ons)(Hno)] was isolated from the reaction of [Re(CO)5Br] with 2-[(2-methylthio)benzylideneimino]phenol (Hons; Hno = 2-aminophenol), with ons coordinated as a bidentate chelate with a free SCH3 group. These complexes were characterized by X-ray crystallography, NMR and IR spectroscopy.  相似文献   

19.
The preparation and properties of complexes of general formulae [Rh(CS)-(HL)(PR3)2]ClO4 (HL = pyrazole (HPz), 3-methylpyrazole (H3-MePz), 3,5-dimethylpyrazole (H3,5-Me2Pz), PR3 = triphenylphosphine, tricyclohexylphosphine) and [(PR3)2(CS)Rh(μ-Pz)AuPPh3]ClO4 are reported. Complexes of the first set react with potassium hydroxide to give [Rh(μ-L)(CS)(PPh3)2 or RhPz(CS)(PR3)2 complexes. The structure of the complex [Rh(3,5-Me2Pz)(CS)(PPh3)]2 has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21/c, with Z = 4 in a unit cell of dimensions a = 12.700(11), b = 17.217(16), c = 23.041(18) Å, β = 116.55(8)°. The structure has been solved by Patterson and Fourier methods and refined by full-matrix least-squares to R = 0.059 for 1978 independent reflections. The structure consists of dimeric complexes, in which each rhodium atom is in a square-planar environment being bonded to a carbon atom of a thiocarbonyl ligand, a phosphorus atom of a triphenylphosphine molecule and to two nitrogen atoms of pyrazolate ligands bridging the metal atoms. The dihedral angle of 71.1° between such two square planes leads to a bent configuration with an intramolecular rhodium-rhodium distance of 3.220 Å. The thiocarbonyl and triphenylphosphine ligands are in a trans disposition.  相似文献   

20.
[Ru(CO)(PPh3)23-O,N3,S-TSC1)] (1), [Ru(Cl)(CO)(PPh3)22-N3,S-TSC2)] (2), and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC3)] (3) have been prepared by reacting [Ru(H)(Cl)(CO)(PPh3)3] with the respective thiosemicarbazones TSC1 (2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone), TSC2 (3-hydroxybenzaldehyde thiosemicarbazone), and TSC3 (3,4-dihydroxybenzaldehyde thiosemicarbazone) in a 1?:?1 M ratio in toluene and all of the complexes have been characterized by UV–vis, FT-IR, and 1H and 31P NMR spectroscopy. The spectroscopic studies showed that TSC1 is coordinated to the central metal as a tridendate ligand coordinating via the azomethine nitrogen (C=N), phenolic oxygen, and sulfur to ruthenium in 1, whereas TSC2 and TSC3 are coordinated to ruthenium as a bidentate ligand through azomethine nitrogen (C=N) and sulfur in 2 and 3. Oxygen sensitivities of 1–3 and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC4)] (4), and antimicrobial activities of 1–3 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号