首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet oxides such as Li6.4La3Zr1.4Ta0.6O12 (LLZTO) are promising solid electrolyte materials for all-solid-state lithium-metal batteries because of high ionic conductivity, low electronic leakage, and wide electrochemical stability window. While LLZTO has been frequently discussed to be stable against lithium metal anode, it is challenging to achieve and maintain good solid-on-solid wetting at the metal/ceramic interface in both processing and extended electrochemical cycling. Here we address the challenge by a powder-form magnesium nitride additive, which reacts with the lithium metal anode to produce well-dispersed lithium nitride. The in situ formed lithium nitride promotes reactive wetting at the Li/LLZTO interface, which lowers interfacial resistance, increases critical current density (CCD), and improves cycling stability of the electrochemical cells. The additive recipe has been diversified to titanium nitride, zirconium nitride, tantalum nitride, and niobium nitride, thus supporting the general concept of reactive dispersion-plus-wetting. Such a design can be extended to other solid-state devices for better functioning and extended cycle life.  相似文献   

2.
锂金属具有高比容量(3860 mA·h/g)和低电化学电位(-3.04 V vs. SHE), 是一种极具潜力的新型电池负极材料. 然而, 锂金属电化学稳定性差, 导致电池循环寿命受限, 容易产生枝晶, 造成电池短路, 引发安全风险, 而其对空气及环境的高度敏感性也极大增加了电池制作的难度与成本, 限制了其应用推广. 改善锂金属负极的界面稳定性被认为是提升锂金属电池性能的重要途径. 本文通过简单直接的热压法在锂金属负极表面构筑了聚偏氟乙烯(PVDF)基双功能保护层, 使锂金属的空气稳定性提升至约120 min, 并延长了锂金属对称电池的循环寿命至约1200 h; 再通过在PVDF保护层内引入亲锂的SnO2粒子, 形成的无机有机复合保护层可以通过原位合金化反应提供锂沉积的形核位点, 在保持良好循环稳定性的基础上进一步降低成锂沉积的过电位, 极化过电位从0.016 V降低到0.007 V. 含有该保护层的全电池展现出约200次的长循环寿命与90%以上的高容量保持率, 在3C高倍率下放电比容量仍达127 mA·h/g. 提出的双功能电极界面保护层策略能有效提升锂金属负极空气稳定性和电化学性能.  相似文献   

3.
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.  相似文献   

4.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm−2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm−2) with a low electrolyte/sulfur ratio (10 μL mg−1). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

5.
《中国化学快报》2022,33(10):4421-4427
Lithium–sulfur (Li–S) batteries exhibit outstanding energy density and material sustainability. Enormous effects have been devoted to the sulfur cathode to address redox kinetics and polysulfide intermediates shuttle. Recent attentions are gradually turning to the protection of the lithium metal anodes, since electrochemical performances of Li–S batteries are closely linked to the working efficiency of the anode side, especially in pouch cells that adopt stringent test protocols. This Perspective article summarizes critical issues encountered in the lithium metal anode, and outlines possible solutions to achieve efficient working lithium anode in Li–S batteries. The lithium metal anode in Li–S batteries shares the common failure mechanisms of volume fluctuation, nonuniform lithium flux, electrolyte corrosion and lithium pulverization occurring in lithium metal batteries with oxide cathodes, and also experiences unique polysulfide corrosion and massive lithium accumulation. These issues can be partially addressed by developing three-dimensional scaffold, exerting quasi-solid reaction, tailoring native solid electrolyte interphase (SEI) and designing artificial SEI. The practical evaluation of Li–S batteries highlights the importance of pouch cell platform, which is distinguished from coin-type cells in terms of lean electrolyte-to-sulfur ratio, thin lithium foil, as well as sizable total capacity and current that are loaded on pouch cells. This Perspective underlines the development of practically efficient working lithium metal anode in Li–S batteries.  相似文献   

6.
金属锂因为其优秀的特性被认为是未来锂电池负极的最终之选。然而目前金属锂负极在旧有液态体系中的研究陷入瓶颈,在新兴固态体系中的挑战层出不穷。想要实现金属锂负极的实用化,必须加深对金属锂负极基础科学问题的认识。本文系统论述了多空间尺度下金属锂的电极行为与对应的表征技术。首先综述了多空间尺度下金属锂负极的基础科学和应用技术问题,结合近年来的工作,对全空间尺度下的先进表征手段做了梳理,分析了从原子级到宏观尺度各种表征手段的技术特点,并重点讨论了各类表征技术在研究固态体系中金属锂负极时的特点与可能的发展方向。  相似文献   

7.
As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.  相似文献   

8.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   

9.
The lithium metal battery has been considered as a promising candidate for next generation batteries.However,safety concerns caused by uncontrollable lithium dendrite growth on lithium anode are severely hampering the commercial application.Metal-organic frameworks(MOFs)become one of the most attractive materials due to the high porosity,structural designability and tunability.With unique open channels and pores as well as functional components in MOFs,the transportation and deposition of lithium ions can be regulated,which leads to enhanced electrochemical prope rties.Various strategies for lithium metal protection are proposed in recent wo rks on applications of MOFs in lithium metal batteries.In this review,we highlight latest key approaches in this field and discuss the prospects for MOFs in advanced Li anodes.  相似文献   

10.
A recent development in homogeneous catalysis is the discovery of catalysts that are active for the lithiation of 1-alkenes to alkenyllithium compounds and lithium hydride as well as for the hydrogenation of lithium and magnesium under mild conditions. The catalytically prepared magnesium hydride is highly reactive and adds to 1-alkenes to give diorganomagnesium compounds and can also be used in the preparation of, for example, silane and “active” magnesium. The use of metal hydrides in hydrogen storage is discussed: hydrogenation/dehydrogenation experiments show that the catalytically prepared magnesium hydride (which can be doped with a second metal) can be used as a high-temperature hydrogen storage material.  相似文献   

11.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

12.
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g) and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of "dead lithium" are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS) as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9% over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_4(LFP) as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4% after 100 cycles at 0.5 C.  相似文献   

13.
Lithium metal attracts growing attention as an ideal anode candidate for next generation lithium battery systems owing to its high capacity,low density,and low working potential.However,the volume expansion of the bulk and dendrite growth on the surface of lithium anode limits its practical application.Herein,we fabricate a composite lithium host featuring both multiple scaled structure and lithiophilic property to address obstacles at both aspects of bulk and surface simultaneously.In which,the multiple scaled structure provides void space to accommodate lithium volume change while zinc and cobalt oxides sites derived from Zeolitic Imidazolate Frameworks can react with lithium and form a stable solid electrolyte interphase,leading to a stable cycling of lithium symmetrical cell for more than 500 cycles with voltage hysteresis of only 88 mV at 2 mAcm~(-2) and 5 mAh cm~(-2).Moreover,full cells paired with LiFePO_4 cathode can realize 500 cycles with 99.2%capacity retention,showing great potential for practical applications.The excellent electrochemical performance of the composite lithium anode proves the effectiveness of our anode design with multiple scaled structure and lithiophilic feature,which can be also expanded to other metal anodes for batteries.  相似文献   

14.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester-based electrolyte is successfully demonstrated, which enables high-voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full-cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high-voltage lithium metal batteries.  相似文献   

15.
徐小龙  王绥军  金翼  汪浩 《应用化学》2020,37(6):703-708
为了解决锂电池负极表面锂枝晶生长带来的性能衰退和安全问题。 以沸石咪唑酯骨架-8(ZIF-8)为前驱体制得介孔碳材料(MCM),用于金属锂负极表面改性。 X射线粉末衍射(XRD)和拉曼光谱表明,退火制得的MCM具有一定的石墨化程度,N2气吸脱附测试(BET)证明MCM具有典型的介孔特征。 对比不同温度退火样品的XRD、拉曼光谱和BET测试结果,确定900 ℃为最佳退火温度。 优化的MCM作为表面改性剂对金属锂负极进行改性研究。 电池充放电循环后,负极样品的XRD和扫描电子显微镜(SEM)测试表明,MCM能够通过均衡锂负极表面的电荷分布抑制金属锂的取向沉积和锂枝晶的生长。 本研究为制备抑制锂电池负极枝晶生长表面改性剂提供了一种简便而有效的合成方法,有利于锂电池循环寿命的延长和安全性能的提高。  相似文献   

16.
二次电池的能量密度已成为推动电动汽车和便携式电子产品技术向前发展的重要指标。使用石墨负极的锂离子电池正接近其理论能量密度的天花板,但仍难以满足高端储能设备的需求。金属锂负极因其极高的理论比容量和极低的电极电位,受到了广泛关注。然而,锂沉积过程中枝晶的生长会导致电池安全性差等问题。电解液对金属锂的沉积有着至关重要的影响。本文设计了一种独特的电解槽体系来进行柱状锂的沉积,研究了不同电解液体系(1mol·L-1LiPF6-碳酸乙烯酯/碳酸二乙酯(EC/DEC,体积比为1:1)、1 mol·L-1 LiPF6-氟代碳酸乙烯酯(FEC,体积分数5%)-EC/DEC (体积比为1:1))对金属锂沉积的影响。对两种电解液中金属锂沉积物长径比的研究表明,电解液的组分可以显著地影响金属锂的沉积形貌,在加入氟代碳酸乙烯酯(FEC)添加剂之后,柱状锂的直径从0.3–0.6μm增加到0.7–1.3μm,长径比从12.5下降到5.6。长径比的降低有助于减小金属锂和电解液的反应面积,提高金属锂负极的利用率和循环寿命。通过考察循环后锂片的表面化学性质,发现FEC的分解增加了锂表面固态电解质界面层中氟化锂(LiF)组分的比例,提高了界面层中锂离子的扩散速率,减少了锂的成核位点,从而给予锂核更大的生长空间,降低了沉积出的柱状锂的长径比。  相似文献   

17.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

18.
《结构化学》2021,40(7)
Aqueous Mg-ion batteries (MIBs) are safe,non-toxic and low-cost.Magnesium has a high theoretical specific capacity with its ion radius close to that of lithium.Therefore,aqueous magnesium ion batteries have great research advantages in green energy.To acquire the best electrode materials for aqueous magnesium ion batteries,it is necessary for the structural design in material.Fe_2O_3 is an anode material commonly used in Li-ion battery.However,the nano-cube Fe_2O_3 combined with graphene hydrogels (GH) can be successfully prepared and employed as an anode,which is seldom researched in the aqueous batteries system.The Fe_2O_3/GH is used as anode in the dual Mg SO_4+Fe SO_4 aqueous electrolyte,avoiding the irreversible deintercalation of magnesium ions.In addition,the Fe element in anode material can form the Fe~(3+)/Fe~(2+)and Fe~(2+)/Fe~(3+)redox pairs in the Mg SO_4+Fe SO_4 electrolyte.Thus,the reversible insertion/(de)insertion of magnesium and iron ions into/from the host anode material can be simultaneously achieved.After the initial charge,the anodic structure is changed to be more stable,avoiding the formation of Mg O.The Fe_2O_3/GH demonstrates high rate properties and reversible capacities of 198,151,121,80,75 and 27 m Ah g~(-1) at 50,100,200,300,500 and1000 m A g~(-1) correspondingly.  相似文献   

19.
金属锂二次电池研究进展   总被引:7,自引:0,他引:7  
本文综述了近年来金属锂二次电池的研究进展,主要包括金属锂负极的表面改性、SEI膜的形成和调制、电解质体系的改进及研发,以及电池制备工艺等,并在综述各方面进展的基础上对金属锂二次电池未来的研究方向进行了展望。  相似文献   

20.
《中国化学快报》2022,33(4):2165-2170
Metal skeletons, such as Nickel Foam (NF) has attracted worldwide interests as stable host for lithium metal anode because of its high stability, large specific surface area and high conductivity. However, most metal skeletons have lithophobic surface and uneven current distribution that result in sporadic lithium nucleation and uncontrolled dendrites growth. Herein, we describe a sequential immersing strategy to generate interwoven Nickel(II)-dimethylglyoxime (Ni-DMG) nanowires at NF to obtain composite skeleton (NDNF), which can be used as an stable host for Li metal storage. The Ni-DMG has proved effective to realize uniform lithium nucleation and dendrite-free lithium deposition. Combing with the three dimensional (3D) hierarchical porous structure, the composite host shows a significantly improved coulombic efficiency (CE) than pristine commercial nickel foam. Moreover, the corresponding Li||Li symmetrical cells can run more than 700 h with low voltage hysteresis 22 mV at 1.0 mA/cm2, and Li@NDNF||LiFePO4 full-cell exhibits a high capacity retention of 82.03% at 1.0 C during 630 cycles. These results proved the effectiveness of metal-organic complexes in governing Li metal growth and can be employed as a new strategy for dendrite-free Li metal anode and safe Li metal batteries (LMBs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号