首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C? N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

2.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

3.
4.
A chemo‐, regio‐, and stereoselective mono‐hydroamidation of (un)symmetrical 1,3‐diynes is described. Key for the success of this novel transformation is the utilization of an advanced palladium catalyst system with the specific ligand Neolephos. The synthetic value of this general approach to synthetically useful α‐alkynyl‐α, β‐unsaturated amides is showcased by diversification of several structurally complex molecules and marketed drugs. Control experiments and density‐functional theory (M06L‐SMD) computations also suggest the crucial role of the substrate in controlling the regioselectivity of unsymmetrical 1,3‐diynes.  相似文献   

5.
A Cu‐catalyzed diastereo‐ and enantioselective borylative coupling reaction of 1,3‐dienes with imines was realized. Branched homoallylic amines are readily prepared in a syn‐selective manner with high regio‐, diastereo‐ and enantioselectivity. Moreover, these three‐component coupling reactions feature good functional‐group compatibility and easy access to the substrates and catalyst.  相似文献   

6.
7.
A novel and efficient palladium‐catalyzed aminocarbonylation of aryl iodides with amides and N‐alkyl anilines has been developed. The reaction tolerates a wide range of functional groups and is a reliable method for the rapid synthesis of a variety of valuable imides and tertiary benzanilides under an atmospheric pressure of CO.  相似文献   

8.
A general and efficient Cu(II)‐catalyzed cross‐coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.  相似文献   

9.
Coumarins possesses immeasurable antitumor potential with minimum side effects depending on the substitutions on the basic nucleus, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, a series of coumarin sulfonamides and amides derivatives were designed and synthetized. The majority of these derivatives showed good cytotoxic activity against MDA-MB-231 and KB cell lines, among which compound 9c was the most potent against MDA-MB-231 cells, with IC50 value of 9.33 μM, comparable to 5-fluorouracil. Further investigation revealed that compound 9c had versatile properties against tumors, including inhibition of cell migration and invasion as well as inducing apoptosis. Reactive oxygen species (ROS) assay and western blotting analysis suggested that compound 9c promoted cancer cell apoptosis by increasing ROS levels and upregulating the expression of caspase-3 in MDA-MB-231 cells. These results indicated that compound 9c could be promising lead compound for further antitumor drug research.  相似文献   

10.
11.
A PdII‐catalyzed asymmetric aminohydroxylation of 1,3‐dienes with N‐tosyl‐2‐aminophenols was developed by making use of a chiral pyridinebis(oxazoline) ligand. The highly regioselective reaction provides direct and efficient access to chiral 3,4‐dihydro‐2H‐1,4‐benzoxazines in high yield and enantioselectivity (up to 96:4 e.r.). The reaction employs readily available N‐tosyl‐2‐aminophenols as a unique aminohydroxylation reagent and is complementary to known asymmetric aminohydroxylation methods.  相似文献   

12.
13.
14.
15.
16.
The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc)2 provided ketenimines through β‐hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π‐allyl Pd complex proceeded via an unusual η1‐allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ‐unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5‐disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide.  相似文献   

17.
The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well‐recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid‐catalyzed N‐allylation of electron‐poor N‐heterocyclic amides and sulfonamide via an amide‐aldehyde‐alkene condensation reaction. The substrate scope with respect to N‐heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N‐methyl‐1‐naphthamide or methyl (naphthalene‐1‐ylmethyl)carbamate, with paraformaldehyde and styrene in a one‐pot manner.  相似文献   

18.
The reaction of the intermediate ketene N,Se‐hemiacetal 3 , prepared from cyanomethylene derivatives 1 by treatment with Et3N and aryl isoselenocyanates 2 , with bis‐electrophiles 6, 7, 9 , and 11 in DMF affords tetrahydro‐1H‐1,3‐selenazine (=1,3‐selenazinane) derivatives 8, 10 , and 12 in good yield (Scheme 2 and Tables 1–3). Chemical and spectroscopic evidence for the structures of the new compounds are described. The structures of 8d and 12e are established by X‐ray crystallography (Figs. 1 and 2).  相似文献   

19.
20.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3)? H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号