首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The reaction scope of iron‐ and cobalt‐catalyzed cross‐coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2‐halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe‐catalyzed cross‐coupling reactions between 6‐chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10 % N,N‐dimethylquinoline‐8‐amine increases the yields of some Co‐catalyzed cross‐coupling reactions with chloropyridines bearing electron‐withdrawing substituents.  相似文献   

2.
An efficient electrochemical access to the non‐symmetric biphenols using tri(p‐bromophenyl)amine (TBPA) as a redox mediator has been developed. The electrochemical protocol features highly selective cross‐coupling products in up to 83% yield, instead of forming homo‐coupling ones.  相似文献   

3.
In Pd‐catalyzed C? N cross‐coupling reactions, α‐branched secondary amines are difficult coupling partners and the desired products are often produced in low yields. In order to provide a robust method for accessing N‐aryl α‐branched tertiary amines, new catalysts have been designed to suppress undesired side reactions often encountered when these amine nucleophiles are used. These advances enabled the arylation of a wide array of sterically encumbered amines, highlighting the importance of rational ligand design in facilitating challenging Pd‐catalyzed cross‐coupling reactions.  相似文献   

4.
A novel PdCl2/bis(2‐pyridylmethyl)amine‐based ligand ( 1 ) catalytic system, which is water‐soluble and air‐stable, has been successfully synthesized and applied for Suzuki‐Miyaura cross‐coupling reaction. In the presence of catalytic amount of PdCl2/ 1 system, arylboronic acids can couple with a wide range of aryl halides, including aryl bromides and aryl chlorides. The reactions proceed under mild conditions to give excellent yields, and a wide range of functionalities is tolerated.  相似文献   

5.
A combination of a tertiary amine‐based palladacycle and an N‐heterocyclic carbene ligand precursor ( 1 , N,N‐bis‐mesityl‐4,5‐dihydroimidazolium chloride) has been applied to catalyze the Suzuki‐Miyaura cross‐coupling of aryl halides with arylboronic acids. The substrate scope is general: a variety of electron rich and deficient aryl halides (I, Br, Cl) and arylboronic acids were found to undergo the cross‐coupling reaction in good to excellent yields at low catalyst loading of 0.01–1 mol%.  相似文献   

6.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

7.
Reported herein is an unprecedented photocatalytic asymmetric cross‐dehydrogenative coupling reaction between tertiary amines and simple ketones, and it proceeds by synergistic multiple catalysis with substoichiometric amounts of a hydrogen acceptor. This process is enabled by a simple chiral primary amine catalyst through the coupling of a catalytic enamine intermediate and an iminium cation intermediate in situ generated from tetrahydroisoquinoline derivatives by coupled Ru/Co catalysis.  相似文献   

8.
Novel N‐aryltriazole nucleosides were synthesized via a Cu‐mediated C? N cross‐coupling reaction, using 3‐aminotriazole acyclonucleosides and various boronic acid reagents. Interestingly, N‐arylation proceeded much more rapidly on the amide group than on the amine group, leading to selective N‐arylation of the amide functionality on nucleosides containing both groups on the triazole nucleobase.  相似文献   

9.
The merging of photoredox and transition‐metal catalysis has become one of the most attractive approaches for carbon–carbon bond formation. Such reactions require the use of two organo‐transition‐metal species, one of which acts as a photosensitizer and the other one as a cross‐coupling catalyst. We report herein an exogenous‐photosensitizer‐free photocatalytic process for the formation of carbon–carbon bonds by direct acceleration of the well‐known nickel‐catalyzed Negishi cross‐coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross‐coupling chemistry that involve the direct visible‐light absorption of organometallic catalytic complexes.  相似文献   

10.
The direct oxidative cross‐coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross‐coupled imines through the synergistic combination of low loadings of CuII metal‐catalyst and o‐iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross‐coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint.  相似文献   

11.
A series of arylynamides with alkyloxy groups at the ortho position of the aryl group was prepared through a short alkylation/cross‐coupling/amidation sequence. The gold‐catalyzed conversion of these substrates combined both C? O and C? C formation steps, thus providing benzofurans with amine functionalities at the 2‐position and alkyl groups at the 3‐position. Cross‐over experiments showed that the alkyl‐migration step was an intermolecular process. X‐ray crystal‐structure analysis of two of the products supported our structural assignment. In some cases, the corresponding benzofurans without the alkyl group at the 3‐position were obtained as side‐products, which were formed through a competing protodeauration process.  相似文献   

12.
In the presence of amino acids as environmentally friendly ligands, CuI‐catalyzed Sonogashira cross‐coupling of various aryl halides with phenylacetylene was conducted to afford the corresponding internal alkynes. l ‐Methionine was found to be useful for this palladium‐free and amine‐free coupling reaction. It was also found that the solvent system plays an important role in this reaction, and significantly affects the product formation and reaction rate. Sonogashira coupling of aryl iodides and aryl bromides in dimethylsulfoxide or dimethylformamide gave the coupled products in good to excellent yields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   

14.
The development of graphene oxide (GO)‐based materials for C?C cross‐coupling represents a significant advance in carbocatalysis. Although GO has been used widely in various catalytic reactions, the scope of reactions reported is quite narrow, and the relationships between the type of functional groups present and the specific activity of the GO are not well understood. Herein, we explore CH?CH‐type cross‐coupling of xanthenes with arenes using GO as real carbocatalysts, and not as stoichiometric reactants. Mechanistic studies involving molecular analogues, as well as trapped intermediates, were carried out to probe the active sites, which were traced to quinone‐type functionalities as well as the zigzag edges in GO materials. GO‐catalyzed cross‐dehydrogenative coupling is operationally simple, shows reusability over multiple cycles, can be conducted in air, and exhibits good functional group tolerance.  相似文献   

15.
The ability of mechanochemistry to alter established chemical selectivity is demonstrated. A copper(I)‐catalyzed mechanochemical aldehyde/alkyne/amine coupling using calcium carbide as the acetylene source provides selective access to 1,4‐diamino‐2‐butynes, which contrasts classical approaches that provide propargylamine‐type products. Solventless milling conditions were found to be essential to unmask A3 coupling products with new compositions.  相似文献   

16.
The ability of mechanochemistry to alter established chemical selectivity is demonstrated. A copper(I)‐catalyzed mechanochemical aldehyde/alkyne/amine coupling using calcium carbide as the acetylene source provides selective access to 1,4‐diamino‐2‐butynes, which contrasts classical approaches that provide propargylamine‐type products. Solventless milling conditions were found to be essential to unmask A3 coupling products with new compositions.  相似文献   

17.
The combination of biocatalysis and chemo‐catalysis increasingly offers chemists access to more diverse chemical architectures. Here, we describe the combination of a toolbox of chiral‐amine‐producing biocatalysts with a Buchwald–Hartwig cross‐coupling reaction, affording a variety of α‐chiral aniline derivatives. The use of a surfactant allowed reactions to be performed sequentially in the same flask, preventing the palladium catalyst from being inhibited by the high concentrations of ammonia, salts, or buffers present in the aqueous media in most cases. The methodology was further extended by combining with a dual‐enzyme biocatalytic hydrogen‐borrowing cascade in one pot to allow for the conversion of a racemic alcohol to a chiral aniline.  相似文献   

18.
A new catalyst for cross‐coupling synthesis of 1,4‐diphenylbutadiyne‐1,3 was prepared by thermolysis of copper(II) poly‐5‐vinyltetrazolate. It presents heterogeneous catalyst, in which copper nanoparticles are supported on polymeric matrix surface. The catalyst is recovered, recycled, and shows high catalytic activity in cross‐coupling synthesis of 1,4‐diphenylbutadiyne‐1,3. The reaction proceeds in aerobic conditions at room temperature in the presence of pyridine.  相似文献   

19.
Iodine(III) reagents are used in catalytic one‐pot reactions, first as both oxidants and substrates, then as cross‐coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp3)?H amination of the iodine(III) oxidant, which delivers an amine‐derived iodine(I) product that is subsequently used in palladium‐catalyzed cross‐couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self‐amination of the hypervalent iodine reagents, which increases the value of the aryl moiety.  相似文献   

20.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号