首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The fabrication of carbon dots and their doped forms by top-down chemical cleavage has attracted considerable attention in the efforts to meet the increasing demands for optoelectronic applications ranging from biosensing to electro- and photocatalysis. However, due to strong quantum confinement effects, the size decrease often leads to an increase in the band gap, even in the emission of deep-ultraviolet (DUV) light, which greatly limits their applications. Here, we report a facile hot-tailoring strategy for fabricating carbon nitride nanodots (CNDs) with redshifted intrinsic photoluminescent (PL) emission, compared with the pristine bulk precursor. It has been found that the different leaving abilities of the C,N-containing groups during the pyrolysis stage and the chemical passivation during the liquid-collection stage played vital roles. Due to the redshifted photoluminescence and other attractive features, the as-obtained CNDs were successfully applied in visual double text encryption with higher security and also in bioimaging with photostability superior to traditional dyes. This work highlights the great potential of the hot-tailoring method in modulating carbon-based nanostructures and offsetting band-gap widening as the size decreases.  相似文献   

2.
Graphite‐like carbon nitride nanosheets (g‐C3N4) have been attracted considerable attention for their applications in catalysis and electrochemiluminesence (ECL) sensor. In this paper, a facile solvothermal method was employed to prepare the functionalized nanocomposites with metal salts cadmium carbonate (CdCO3) and g‐C3N4 hybrids (g‐C3N4‐CdCO3). The prepared materials were characterized by scanning electron microscope (SEM), X‐ray energy dispersive spectroscopy (EDX) and Fourier transform infrared spectra (FTIR). The nanocomposites was used not only as a new type luminophore but also as a chiral selector in this simple and sensitive ECL chiral sensor system for the recognition and detection of propranolol (Pro) enantiomers via quenching effect. The obvious difference of ECL signal of S‐Pro and R‐Pro was obtained. Thus, the sensor had the ability to distinguish Pro enantiomers. The mechanism of recognition was discussed by the theoretical calculation of binding constant and the water contact angle experiments. The sensor for Pro enantiomers was developed at wide concentration range from 0.001 to 1 mmol?L?1. The sensor with excellent sensitivity, stability and reproducibility provide a new strategy based on ECL for chiral recognition and the ECL chiral sensor.  相似文献   

3.
二维(2D)层状石墨型氮化碳纳米片(CNNS)由于具有各向异性的2D几何形态和芳香族p-π共轭骨架,高度开放的平面结构、超高的比表面积、增强的电子迁移速率和与层厚度相关可调的半导体带隙等特征,是目前2D层状材料的研究热点之一。 本文综述了近年来氮化碳纳米片的各种制备方法、功能化改性和应用,涉及环保、能源转换及生物传感等领域。 最后指出进一步探索制备高质量氮化碳纳米片的新方法以及拓展其在光催化领域的应用是未来研究的重点。  相似文献   

4.
陈艳  刘海波 《无机化学学报》2017,33(12):2255-2261
通过简单调整g-C_3N_4的热聚合方式,一步构筑了超薄氮化碳纳米片,厚度在0.2~0.4 nm左右,分布均匀,比表面积可以达到99 m~2·g~(-1)。光催化性能测试结果表明,随着纳米片比表面积的增大,材料除了表现出优异的光解水性能以外,还在微生物领域表现出一定的抗菌性能,且活性随着聚合温度的升高、纳米片层的变薄而逐渐提高。  相似文献   

5.
通过简单调整g-C3N4的热聚合方式,一步构筑了超薄氮化碳纳米片,厚度在0.2~0.4 nm左右,分布均匀,比表面积可以达到99 m2·g-1。光催化性能测试结果表明,随着纳米片比表面积的增大,材料除了表现出优异的光解水性能以外,还在微生物领域表现出一定的抗菌性能,且活性随着聚合温度的升高、纳米片层的变薄而逐渐提高。  相似文献   

6.
The effects of defect states on the fluorescence (FL) and electrochemiluminescence (ECL) properties of graphite phase carbon nitride (g-CN) are systematically investigated for the first time. The g-CN nanosheets (CNNSs) obtained at different condensation temperatures are used as the study models. It can be found that all the CNNSs have two kinds of defect states, one is originated from the edge of CNNSs (labeled as CN-defect) and the other is attributed to the partially carbonization regions (labeled as C-defect). Both two kinds of defect states substantially affect the luminescent properties of CNNSs. Both the FL and ECL signals of CNNSs contain a band gap emission and two defect emissions. For the FL of CNNSs, decreasing the density of defect states can increase efficiently the FL quantum yield, while increasing the density of defect states can make the FL spectra red shift. For the ECL of CNNSs, increasing the density of CN-defect states and decreasing the density of C-defect states are greatly important to improve the ECL activity. This work provides a deep insight into the FL and ECL mechanisms of g-CN, and is of significance in tuning the FL and ECL properties of g-CN. Also, it will greatly promote the applications of CNNSs based on the FL and ECL properties.  相似文献   

7.
Two‐dimensional (2D) carbon nanomaterials possessing promising physical and chemical properties find applications in high‐performance energy storage devices and catalysts. However, large‐scale fabrication of 2D carbon nanostructures is based on a few specific carbon templates or precursors and poses a formidable challenge. Now a new bottom‐up method for carbon nanosheet fabrication using a newly designed anisotropic carbon nanoring molecule, CPPhen, is presented. CPPhen was self‐assembled at a dynamic air–water interface with a vortex motion to afford molecular nanosheets, which were then carbonized under inert gas flow. Their nanosheet morphologies were retained after carbonization, which has never been seen for low‐molecular weight compounds. Furthermore, adding pyridine as a nitrogen dopant in the self‐assembly step successfully afforded nitrogen‐doped carbon nanosheets containing mainly pyridinic nitrogen species.  相似文献   

8.
9.
A glucopyranose functionalized star‐shaped oligomer, N‐tris{4,4′,4′′‐[(1E)‐2‐(2‐{(E)‐2‐[4‐(benzo[d]thiazol‐2‐yl)phenyl]vinyl}‐9,9‐bis(6‐2‐amido‐2‐deoxy‐1‐thio‐β‐D ‐glucopyranose‐hexyl)‐9H‐fluoren‐7‐yl)vinyl]phenyl}phenylamine (TVFVBN‐S‐NH2), is synthesized for two‐photon fluorescence imaging. In water, TVFVBN‐S‐NH2 self‐assembles into nanoparticles with an average diameter of ~49 nm and shows a fluorescence quantum yield of 0.21. Two‐photon fluorescence measurements reveal that TVFVBN‐S‐NH2 has a two‐photon absorption cross‐section of ~1100 GM at 780 nm in water. The active amine group on the glucopyranose moiety allows further functionalization of TVFVBN‐S‐NH2 with folic acid to yield TVFVBN‐S‐NH2FA with similar optical and physical properties as those for TVFVBN‐S‐NH2. Cellular imaging studies reveal that TVFVBN‐S‐NH2FA has increased uptake by MCF‐7 cells relative to that for TVFVBN‐S‐NH2, due to specific interactions between folic acid and folate receptors on the MCF‐7 cell membrane. This study demonstrates the effectiveness of glycosylation as a molecular engineering strategy to yield water‐soluble materials with a large two‐photon absorption (TPA) cross‐section for targeted cancer‐cell imaging.  相似文献   

10.
Graphitic carbon nitride has been predicted to be structurally analogous to carbon‐only graphite, yet with an inherent bandgap. We have grown, for the first time, macroscopically large crystalline thin films of triazine‐based, graphitic carbon nitride (TGCN) using an ionothermal, interfacial reaction starting with the abundant monomer dicyandiamide. The films consist of stacked, two‐dimensional (2D) crystals between a few and several hundreds of atomic layers in thickness. Scanning force and transmission electron microscopy show long‐range, in‐plane order, while optical spectroscopy, X‐ray photoelectron spectroscopy, and density functional theory calculations corroborate a direct bandgap between 1.6 and 2.0 eV. Thus TGCN is of interest for electronic devices, such as field‐effect transistors and light‐emitting diodes.  相似文献   

11.
Free‐standing flexible films, constructed from two‐dimensional graphitic carbon nitride and titanium carbide (with MXene phase) nanosheets, display outstanding activity and stability in catalyzing the oxygen‐evolution reaction in alkaline aqueous system, which originates from the Ti–Nx motifs acting as electroactive sites, and the hierarchically porous structure with highly hydrophilic surface. With this excellent electrocatalytic ability, comparable to that of the state‐of‐the‐art precious‐/transition‐metal catalysts and superior to that of most free‐standing films reported to date, they are directly used as efficient cathodes in rechargeable zinc–air batteries. Our findings reveal that the rational interaction between different two‐dimensional materials can remarkably promote the oxygen electrochemistry, thus boosting the entire clean energy system.  相似文献   

12.
13.
14.
A mixture of bulk hexagonal boron nitride (h‐BN) with hydrazine, 30 % H2O2, HNO3/H2SO4, or oleum was heated in an autoclave at 100 °C to produce functionalized h‐BN. The product formed stable colloid solutions in water (0.26–0.32 g L ?1) and N,N‐dimethylformamide (0.34–0.52 g L ?1) upon mild ultrasonication. The yield of “soluble” h‐BN reached about 70 wt %. The dispersions contained few‐layered h‐BN nanosheets with lateral dimensions in the order of several hundred nanometers. The functionalized dispersible h‐BN was characterized by IR spectroscopy, X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It is shown that h‐BN preserves its hexagonal structure throughout the functionalization procedure. Its exfoliation into thin platelets upon contact with solvents is probably owing to the attachment of hydrophilic functionalities.  相似文献   

15.
Three water‐soluble tetracationic quadrupolar chromophores comprising two three‐coordinate boron π‐acceptor groups bridged by thiophene‐containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5‐(3,5‐Me2C6H2)‐2,2′‐(C4H2S)2‐5′‐(3,5‐Me2C6H2) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one‐ and two‐photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one‐ and two‐photon‐excited fluorescence imaging of mitochondrial function in cells.  相似文献   

16.
Photocatalytic reactions, including hydrogen/oxygen generation, water splitting and hydrogen peroxide production, are regarded as a renewable and promising method to harvest and use solar energy. The key to achieving this goal is to explore efficient photocatalysts with high productivity. Recently, two‐dimensional (2D) polymeric carbon nitride nanosheets were reported as efficient photocatalysts toward various products because of their outstanding properties, such as high specific surface area, more reactive sites, the quantum effect in thickness and unique electronic properties. This minireview attempts to overview recent advances in the preparation, structure and properties of crystalline and amorphous carbon nitride nanosheets, and their applications in photocatalytic hydrogen/oxygen evolution, water splitting and hydrogen peroxide production. We also thoroughly discuss the effect of defects, dopants and composites on the photocatalytic efficiency of these carbon nitride nanosheets. Finally, we outlook the ongoing opportunities and future challenges for 2D carbon nitride nanosheets in the field of photocatalysis.  相似文献   

17.
Two‐dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one‐pot reductive method to produce solutions of single‐ and few‐layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High‐resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.  相似文献   

18.
Human Tau protein is the most reliable biomarker for the prediction of Alzheimer’s disease (AD). However, the assay to detect low concentrations of tau protein in serum is a great challenge for the early diagnosis of AD. This paper reports an electrochemiluminescence (ECL) immunosensor for Tau protein in serum samples. Gold nanostars (AuNSs) decorated on carbon nitride nanosheets (AuNS@g-CN nanostructure) show highly strong and stable ECL activity compared to pristine CN nanosheets due to the electrocatalytic and surface plasmon effects of AuNSs. As a result of the strong electromagnetic field at branches, AuNSs showed a better ECL enhancement effect than their spherical counterpart. For the fabrication of a specific immunosensor, immobilized AuNSs were functionalized with a monoclonal antibody specific for Tau protein. In the presence of Tau protein, the ECL intensity of the immunosensor decreased considerably. Under the optimal conditions, this ECL based immunosensor exhibits a dynamic linear range from 0.1 to 100 ng mL−1 with a low limit of detection of 0.034 ng mL−1. The LOD is less than the Tau level in human serum; thus, this study provides a useful method for the determination of Tau. The fabricated ECL immunosensor was successfully applied to the detection of Tau, the biomarker in serum samples. Therefore, the present approach is very promising for application in diagnosing AD within the early stages of the disease.  相似文献   

19.
A novel, simple, and efficient method for the preparation of the fluorinated hexagonal boron nitride nanosheets (F‐BNNSs) and the corresponding magnetic properties is presented. A one‐step route is used to exfoliate and fluorinate the BNNSs by ammonium fluoride (NH4F) from hexagonal boron nitride (h‐BN) powder. Through related instrument characterizations and theoretical calculations, we confirm that large‐area and few‐layer F‐BNNSs were successfully produced by this method, which can be attributed to a fluorination‐assisted exfoliation mechanism from the bulk h‐BN in NH4F. More intriguingly, we initially verified that the as‐prepared F‐BNNSs exhibit ferromagnetic characteristics, which would have good potential applications in spintronic devices.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号