首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodium/DuanPhos‐catalyzed asymmetric hydrogenation of aliphatic α‐dehydroamino ketones has been achieved and afforded chiral α‐amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β‐amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α‐amino ketones and chiral β‐amino alcohols.  相似文献   

2.
An enantioselective PdII/Brønsted acid‐catalyzed carbonylative carbocyclization of enallenes ending with a cross‐dehydrogenative coupling (CDC) with a terminal alkyne was developed. VAPOL phosphoric acid was found as the best co‐catalyst among the examined 28 chiral acids, for inducing the enantioselectivity of α‐chiral ketones. As a result, a number of chiral cyclopentenones were easily synthesized in good to excellent enantiomeric ratio with good yields.  相似文献   

3.
Amino‐acid‐derived phosphine catalyzed [4+2] cycloaddition leading to chiral tetrahydropyridines, making use of α‐substituted allenic ketones as “C4 synthons” and N‐sulfonyl cyclic ketimines, has been developed. This asymmetric cycloaddition tolerates a wide range of α‐substituted allenic ketones. A series of chiral sultam‐fused tetrahydropyridines bearing a quaternary stereocenter were obtained in high yields with good enantioselectivities.  相似文献   

4.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

5.
A catalytic asymmetric intramolecular homologation of simple ketones with α‐diazoesters was firstly accomplished with a chiral N,N′‐dioxide–Sc(OTf)3 complex. This method provides an efficient access to chiral cyclic α‐aryl/alkyl β‐ketoesters containing an all‐carbon quaternary stereocenter. Under mild conditions, a variety of aryl‐ and alkyl‐substituted ketone groups reacted with α‐diazoester groups smoothly through an intramolecular addition/rearrangement process, producing the β‐ketoesters in high yield and enantiomeric excess.  相似文献   

6.
Enantioselective protonation with a catalytic enamine intermediate represents a challenging, yet fundamentally important process for the synthesis of α‐chiral carbonyls. We describe herein chiral primary‐amine‐catalyzed conjugate additions of indoles to both α‐substituted acroleins and vinyl ketones. These reactions feature enamine protonation as the stereogenic step. A simple primary–tertiary vicinal diamine 1 with trifluoromethanesulfonic acid (TfOH) was found to enable both of the reactions of acroleins and vinyl ketones with good activity and high enantioselectivity. Detailed mechanistic studies reveal that these reactions are rate‐limiting in iminium formation and they all involve a uniform H2O/acid‐bridged proton transfer in the stereogenic steps but divergent stereocontrol modes for the protonation stereoselectivity. For the reactions of α‐branched acroleins, facial selections on H2O‐bridged protonation determine the enantioselectivity, which is enhanced by an OH???π interaction with indole as uncovered by DFT calculations. On the other hand, the stereoselectivity of the reactions with vinyl ketones is controlled according to the Curtin–Hammett principle in the C? C bond‐formation step, which precedes a highly stereospecific enamine protonation.  相似文献   

7.
Optically active medium‐sized cyclic carbonyl compounds bearing an α‐chiral carbon center are of interest in pharmaceutical sciences and asymmetric synthesis. Herein, SpinPhox/IrI catalysts have been demonstrated to be highly enantioselective in the asymmetric hydrogenation of the CC bonds in the exocyclic α,β‐unsaturated cyclic carbonyls, including a broad range of α‐alkylidene lactams, unsaturated cyclic ketones, and lactones. It is noteworthy that the procedure can be successfully used in the asymmetric hydrogenation of the challenging α‐alkylidenelactam substrates with six‐ or seven‐membered rings, thus affording the corresponding optically active carbonyl compounds with an α‐chiral carbon center in generally excellent enantiomeric excesses (up to 98 % ee). Synthetic utility of the protocol has also been demonstrated in the asymmetric synthesis of the anti‐inflammatory drug loxoprofen and its analogue, as well as biologically important ε‐aminocaproic acid derivatives.  相似文献   

8.
The Lewis acid–assisted chiral Brønsted acids (chiral LBAs), which are prepared from tin tetrachloride and optically active binaphthol derivatives, are highly effective chiral proton donor reagents for enantioselective protonation and biomimetic polyene cyclization. These chiral LBAs can directly protonate various silyl enol ethers and ketene disilyl acetals to give the corresponding α‐aryl or α‐halo ketones and α‐arylcarboxylic acids, respectively, with high enantiomeric excess (up to 98% ee). A catalytic version of enantioselective protonation was also achieved using stoichiometric amounts of 2,6‐dimethylphenol and catalytic amounts of monomethyl ether of optically active binaphthol in the presence of tin tetrachloride. The biomimetic cyclization of simple isoprenoids to polycyclic isoprenoids using chiral LBA is also described. This is the first example of a chiral Brønsted acid–induced enantioselective ene cyclization in synthetic chemistry. Geranyl phenyl ethers, o‐geranylphenols, and homogeranylphenol derivatives were directly cyclized in the presence of (R)‐binaphthol derivatives and tin tetrachloride (up to 90% ee). Compounds bearing a farnesyl group could also be cyclized under the same conditions to give the natural products (?)‐ambrox® and (?)‐chromazonarol, and (?)‐tetracyclic polyprenoids of sedimentary origin. These chiral LBAs recognize the prochiral face of a trisubstituted terminal olefin and site selectively generate carbocations on the substrates. © 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 2: 177–188,2002: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.10020  相似文献   

9.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

10.
The α‐arylation of carbonyl compounds is generally accomplished under basic conditions, both under metal catalysis and via aryl transfer from the diaryl λ3‐iodanes. Here, we describe an alternative metal‐free α‐arylation using ArI(O2CCF3)2 as the source of a 2‐iodoaryl group. The reaction is applicable to activated ketones, such as α‐cyanoketones, and works with substituted aryliodanes. This formal C? H functionalization reaction is thought to proceed through a [3,3] rearrangement of an iodonium enolate. The final α‐(2‐iodoaryl)ketones are versatile synthetic building blocks.  相似文献   

11.
The successful application of imidazole‐modified ketones in asymmetric anti‐selective Michael reactions with trans‐β‐nitroalkenes is presented by employing a newly developed 3‐bromothiophene‐modified chiral diamine ligand. The corresponding conjugate adduct was submitted to further transformations with Grignard reagents to solve the problem of α‐site selectivity of simple linear ketones. Additionally, the syn‐selective product was obtained by treating the anti‐selective adduct with a simple base. In this way, the site‐specific products for both diastereomers in the asymmetric conjugate addition of simple ketones to nitroalkenes can be obtained.  相似文献   

12.
Vinyl boron ate complexes of enantioenriched secondary alkyl pinacolboronic esters undergo stereospecific radical‐induced 1,2‐migration in radical polar crossover reactions. In this three‐component process various commercially available alkyl iodides act as radical precursors and light is used for chain initiation. Subsequent oxidation and protodeborylation leads to valuable α‐chiral ketones and chiral alkanes, respectively, with excellent enantiopurity.  相似文献   

13.
Chiral α‐amino ketones are excellent nucleophiles for stereoselective palladium‐catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.  相似文献   

14.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

15.
Chiral α‐hydroxyl acids are of great importance in chemical synthesis. Current methods for recognizing their chirality by 1H NMR are limited by their small chemical shift differences and intrinsic solubility problem in organic solvents. Herein, we developed three YbDO3A(ala)3 derivatives to recognize four different commercially available chiral α‐hydroxyl acids in aqueous solution through 1H NMR and chemical exchange saturation transfer (CEST) spectroscopy. The shift difference between chiral α‐hydroxyl acid observed by proton and CEST NMR ranged from 15–40 and 20–40 ppm, respectively. Our work demonstrates for first time, that even one chiral center on the side‐arm chain of cyclen could set the stage for rotation of the other two non‐chiral side chains into a preferred position. This is ascribed to the lower energy state of the structure. The results show that chiral YbDO3A‐like complexes can be used to discriminate chiral α‐hydroxyl acids with a distinct signal difference.  相似文献   

16.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

17.
An enantioselective catalytic alkoxylation/oxidative rearrangement of allylic alcohols has been established by using a Brønsted acid and chiral organoiodine. The presence of 20 mol % of an (S)‐proline‐derived C2‐symmetric chiral iodine led to enantioenriched α‐arylated β‐alkoxylated ketones in good yields and with high levels of enantioselectivity (84–94 % ee).  相似文献   

18.
《化学:亚洲杂志》2017,12(6):633-637
Chiral spirocarbocyclic skeletons are ubiquitous in natural products. An intramolecular Tsuji–Trost (T–T) α‐allylation of simple cyclic ketones is a reasonable approach to construct chiral spriocarbocyclic motifs; however, it has been a challenging approach despite many excellent intermolecular examples. For the first time, this has been achieved by a Ru/H+ combined catalyst that dehydratively cyclizes racemic allylic alcohols comprising a simple ketone via simultaneous activation of the C=O and OH groups. This chiral technology facilitates the construction of various spirocarbocycles containing two contiguous spiro all‐carbon quaternary and tertiary stereocenters. Among four possible stereoisomers, one stereoisomer can be selectively produced in high yield, enhancing the feasibility of the T–T strategy, particularly in the synthesis of spirocarbocycles.  相似文献   

19.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

20.
A highly regio‐, diastereo‐ and enantioselective Michael addition–alkylation reaction between α‐substituted cyano ketones and (Z)‐bromonitrostyrenes has been realized by using a chiral N,N′‐dioxide as organocatalyst. A variety of substrates performed well in this reaction, and the corresponding multifunctionalized chiral 2,3‐dihydrofurans were obtained in up to 95 % yield with 95:5 dr and 93 % ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号