首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver nanoparticles were synthesized using clove extract (CE). Scanning transmission electron microscopy (STEM) revealed the morphology of the metallic Ag nanoparticles obtained via the clove extract synthesis (Ag NPs‐CE), which had a uniform distribution and average sizes varying from 10 nm to 100 nm. Fourier transform infra‐red (FTIR) spectroscopy showed that clove eugenol acts as a capping and reducing agent being adsorbed on the surface of Ag NPs‐CE, enabling their reduction from Ag+ and preventing their agglomeration. Formation of the Ag0 structure is also confirmed in the FTIR spectrum by the presence in the Ag NPs‐CE sample of the –C=O and –C=C vibrations at wavenumbers 1600 and 2915 cm‐1, respectively. Antibacterial and antifungal tests using three strains of bacteria and one fungi strain showed that the Ag NPs‐CE performed better compared to pure clove extract (CE) sample.  相似文献   

2.
在乙醇胺-水混合溶液中采用水热处理硫酸铜的方法制备了多结构的铜树枝晶;采用X射线粉末衍射仪、扫描电子显微镜、透射电子显微镜分析了所得样品的结构和形貌;采用牛津杯法评价了其对金黄葡萄球菌、枯草芽孢杆菌、大肠杆菌和绿脓杆菌的抗菌性能.结果表明,铜树枝晶由一个长的一级中心主干和许多高度对称分布在主干两侧的二级分支结构构成,且形貌均匀;反应温度、反应时间以及溶剂组成对铜树枝晶的形貌有很大影响.与此同时,铜树枝晶表现出选择性的抗菌行为,对金黄葡萄球菌、枯草芽孢杆菌和绿脓杆菌更有效.  相似文献   

3.
Green synthesis of silver nanoparticles (Ag NPs) has been achieved using oak fruit bark extract as a reducing, capping and stabilizing agent. The biosynthesized Ag NPs were characterized using various techniques. UV–visible spectrum of prepared silver colloidal solution showed absorption maximum at 433 nm. X‐ray diffraction and transmission electron microscopy analysis revealed that Ag NPs have a face‐centred cubic structure being spherical in shape with an average particle size of 20–25 nm. The toxicity of the Ag NPs was tested on bacterial species such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli by comparison based on diameter of inhibition zone in disc diffusion tests and minimum inhibitory concentration and minimum bactericidal concentration of NPs dispersed in liquid cultures. The antimicrobial activity of Ag NPs was greater towards Gram‐positive bacteria (S. aureus and B. subtilis) compared to Gram‐negative bacteria as determined using standard Kirby–Bauer disc diffusion assay and serial dilution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

The present study reports ecofriendly synthesis of CuO nanoparticles (NPs) using an extract of Rhus punjabensis as a reducing agent. NPs structural and composition analysis are evaluated by X-rays diffraction (XRD), Fourier transform infrared, Energy dispersive spectroscopy, Scanning electron microscopy, Transmission electron microscopy, and Thermal analysis. The NPs have pure single phase monoclinic geometry with spherical structure and high stability toward heat and with average particle size of about 36.6 and 31.27?nm calculated by XRD and SEM, respectively. NPs are tested for antibacterial, protein kinase (PK) inhibition, SRB cytotoxic, and NF-κB activities. Antibacterial activity is observed against B. subtilis and E. coli. Significant PK and SRB cytotoxic activity is observed with some NF-κB inhibition. NPs IC50 values against HL-60 and PC-3 prostate cancer cells are 1.82?±?1.22 and 19.25?±?1.55?μg/mL. The results encourage further studies for antibacterial and anticancer drug development of NPs using animal models.  相似文献   

5.
Grass waste was used for transform an inexpensive waste into health. Silver nanoparticles (AgNPs) have been synthesized using waste material (dried grass). The average size of silver nanoparticles observed in transmission electron images was estimated to be about 15?nm. The anticancer, antifungal and antibacterial effect of AgNPs were studied in vitro. The minimum inhibitory concentration of AgNPs against Pseudomonas aeruginosa and Acinetobacter baumannii was calculated about 3?µg/ml. The highest level of inhibitory effect of AgNPs against Fusarium solani was close to 90% at a concentration of 20?μg/ml of AgNPs. An inhibitory effect on the cancer cell growth is reach, by increasing the concentration of AgNPs to 5?µg/ml; the cancer cells’ survival decreases about 30%. Western results showed that the expression of Cyclin D1 protein of MCF-7 cell line decreased after treatment with the effective concentration of AgNPs.  相似文献   

6.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   

7.
In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.  相似文献   

8.
Tamarind nut powder (TNP) from kitchen waste of tamarind nuts was modified with in situ generated copper nanoparticles (CuNPs) using hydrothermal method. The modified TNP had spherical CuNPs with an average size of 84?nm. The thermal stability of the modified TNP was lower than that of the TNP due to the catalytic activity of the in situ generated CuNPs in lowering the thermal stability. Further, it exhibited significant antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be used as low-cost filler to prepare antibacterial hybrid polymer nanocomposites for packaging and medical applications.  相似文献   

9.
Nowadays, the industrial wastewater pollutants including toxic dyes and pathogenic microbes have caused serious environmental contaminations and human health problems. In the present study, eco-friendly and facile green synthesis of Ag modified ZnO nanoparticles (ZnO-Ag NPs) using Crataegus monogyna (C. monogyna) extract (ZnO-Ag@CME NPs) is reported. The morphology and structure of the as-biosynthesized product were characterized by field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), differential reflectance spectroscopy (DRS), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) techniques. TEM and FESEM images confirmed the oval and spherical-like structure of the products with a size of 55–70 nm. The EDS analysis confirmed the presence of Zn, Ag, and O elements in the biosynthesized product. The photocatalytic results showed ZnO-Ag@CME NPs were degraded (89.8% and 75.3%) and (94.2% and 84.7%) of methyl orange (MO) and basic violet 10 (BV10), under UV and sunlight irradiations, respectively. The Ag modified ZnO nanoparticles exhibited enhanced catalytic activity towards organic pollutants, and showed better performance than the pure ZnO nanoparticles under UV and sunlight irradiations. This performance was probably due to the presence of silver nanoparticles as a plasmonic material. Antibacterial activity was performed against different bacteria. ZnO-Ag@CME NPs showed high antibacterial activity against K. pneumoniae, S. typhimurium, P. vulgaris, S. mitis, and S. faecalis with MIC values of 50, 12.5, 12.5, 12.5, and 12.45 µg/mL, respectively. All in all, the present investigation suggests a promising method to achieve high-efficiency antibacterial and catalytic performance.  相似文献   

10.
A facile, convenient and green method has been employed for the synthesis of silver nanoparticles (AgNPs) using dried biomass of a green alga, Chlorella ellipsoidea. The phytochemicals from the alga, as a mild and non-toxic source, are believed to serve as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of a surface plasmon resonance band at 436 nm and energy dispersive X-ray spectroscopy. The transmission electron microscopy images showed the nanoparticles to be nearly spherical in shape with different sizes. A dynamic light scattering study revealed the average particle size to be 220.8 ± 31.3 nm. Fourier transform infrared spectroscopy revealed the occurrence of alga-derived phytochemicals attached to the outer surface of biogenically accessed silver nanoparticles. The powder X-ray diffraction study revealed the face-centred cubic crystalline structure of the nanoparticles. The as-synthesized biomatrix-loaded AgNPs exhibited a high photocatalytic activity for the degradation of the hazardous pollutant dyes methylene blue and methyl orange. The catalytic efficiency was sustained even after three reduction cycles. A kinetic study indicated the degradation rates to be pseudo-first order with the degradation rate being 4.72 × 10−2 min−1 for methylene blue and 3.24 × 10−2 min−1 for methyl orange. The AgNPs also exhibited significant antibacterial activity against four selected pathogenic bacterial strains.  相似文献   

11.
In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs’ antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichia coli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.  相似文献   

12.
In this study, biogenic copper and zinc oxide nanoparticles (G-ZnONPs and G-CuONPs) were synthesized by the green synthesis method using Malva parviflora L. (Millow) leaf extract and the obtained nanoparticles were characterized in detail with UV-Vis, FTIR, SEM, XRD. The antibacterial properties of the synthesized nanoparticles on gram-positive and gram-negative bacteria were investigated and it was found that the nanoparticles had high antimicrobial activity in the results of the experiments. With the obtained G-CuONPs, the synthesis of bis(indolyl)methanes with the “green” one-pot synthesis using microwave was achieved quickly and with high efficiency, and the thermal behavior of the obtained products was investigated.  相似文献   

13.
ABSTRACT

The synthesized ZnO NPs using durian rind in solution has shown maximum absorption at 355.5?nm with the bandgap of 3.33?eV, spectrophotometrically. SEM and TEM studies revealed that the shape of the synthesized ZnO NPs was spherical with an average size of 280 and 283?nm, respectively. However, DLS analysis of ZnO NPs revealed the average particle size of 456?d.nm. The presence of [100], [002], [101], [102], [110], [103], [200], [112] and [201] planes in XRD corroborate the formation of pure wurtzite structure of ZnO NPs. Synthesized ZnO NPs showed remarkable photocatalytic activity on degradation of methylene blue and sulfanilamide, antioxidant activity, considerable antimicrobial activity against Escherichia coli and Staphylococcus aureus, and considerable cytotoxic activity against brine shrimp. The sulfanilamide degradation was found to be 96.70%, under natural sunlight and in the presence of 0.1% ZnO NPs at pH 10 with a time of 3?h. The dye degradation was found to be 84% under sunlight in the presence of 0.01% ZnO NPs at pH 10 with a time of 40?min. The synthesized ZnO NPs may be explored furthermore in the fields of wastewater treatment, biomedicine, biosensor, and nanotechnology.  相似文献   

14.
《Mendeleev Communications》2023,33(3):337-339
Copper nanoparticles 3.8 –10.9 nm in size were synthesized in solid-phase membrane liposomes by a facile method of copper sulfate reduction with hydrazine. A change in the excess of hydrazine leads to the controlled formation of either Cu2O or Cu0 nanoparticles.  相似文献   

15.
Cellulose was dissolved in aq.(LiOH + urea) solution pre-cooled to –12.5°C and the wet films were prepared using ethyl alcohol coagulation bath. The gel cellulose films were dipped in 10 wt.% Cassia alata leaf extract solution and allowed the extract to diffuse into them. The leaf extract infused wet cellulose films were dipped in different concentrated aq. copper sulphate solutions and allowed for in situ generation of copper nanoparticles (CuNPs) inside the matrix. The morphological, structural, antibacterial, thermal, and tensile properties of dried cellulose/CuNP composite films were carried out. The presence of CuNPs was established by EDX spectra and X-ray diffraction. The composite films displayed higher thermal stability than the matrix due to the presence of CuNPs. Cellulose/CuNP composite films possessed better tensile strength than the matrix. The composite films showed good antibacterial activity against E.coli bacteria. We conclude that good antibacterial activity and better tensile properties of the cellulose/CuNP composite films make them suitable for antibacterial wrapping and medical purposes.  相似文献   

16.
The importance of green synthesis was revealed with advantages such as: eliminating the use of expensive chemicals; consume less energy; and generate environmentally benign products. With this aim, silver nanoparticles (AgNPs) were synthesized by using isolated eugenol from clove extract. Its antimicrobial potential was determined on three different microorganisms. Clove was extracted and eugenol was isolated from this extract. Green synthesis was performed and an anti‐microbial study was performed. All extraction and isolation analyses were performed by high‐performance liquid chromatography (HPLC); identification and confirmation were achieved using liquid chromatography–mass spectrometry (LC–MS); and scanning electron microscopy was used for characterization. Both HPLC and LC–MS analyses showed that eugenol obtained purely synthesized AgNPs and 20‐25‐nm‐sized and homogeneous shaped particles seen in images. The antimicrobial effects of AgNPs at eight concentrations were determinated against Staphylococcus aureus, Escherichia coli and Candida albicans, and maximum inhibition zone diameters were found as 2.6 cm, 2.4 cm and 1.5 cm, respectively. The results of the antimicrobial study showed that eugenol as a biological material brought higher antimicrobial effect to AgNPs in comparison to the other materials found in the literature.  相似文献   

17.
A green method for the synthesis of supported Pd nanoparticles (NPs) using pine needle extract as the reducing agent and the extracted residue of pine needle (RPN) as the carrier is described. The Pd/RPN nanocomposites were characterized using Fourier transform infrared, UV–visible, inductively coupled plasma atomic emission and X‐ray photoelectron spectroscopies, transmission electron microscopy and X‐ray diffraction. The spherical Pd NPs had a mean particle size of 3.25 nm and were evenly distributed on the RPN surface. More importantly, the Pd/RPN nanocomposite, as a heterogeneous catalyst, presented superior catalytic activity for the Suzuki coupling reaction. The yield of the reaction of 4‐bromotoluene with phenylboronic acid catalyzed by Pd0.03/RPN reached 98% with low Pd loading (0.1 mmol%) at room temperature for 30 min. In addition, the catalyst could be easily separated by centrifugation and reused at least six times without significant loss of activity.  相似文献   

18.
Zinc oxide nanoparticles have attracted significant interest in recent years due to their unique multifunctional chemical and physical properties along with their biological activities. This study demonstrated for the first time the biogenetic synthesis of zinc oxide nanoparticles by utilization of the methanolic extract of Hypericum triquetrifolium (HT). The obtained nanoparticles (HT-ZnO) were characterized by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The shape of the resulted nanoparticles is fusiform nanoflowers with an average hydrodynamic size of 275.46 ± 0.20 nm and a zeta potential of −8.23 ± 0.26 mV. SEM micrographs revealed that HT-ZnO nanoflowers have a multi-process structure in which one of the processes is large and the others have similar smaller dimensions. The synthesized nanoflowers have an average length of 312.28 ± 78.93 nm and the tip of its processes has a width of 48.69 ± 9.71 nm. The antimicrobial activity of HT-ZnO nanoflowers was performed using microbroth dilution format. It showed a bactericidal mode of action against Gram-positive Staphylococcus aureus and Enterococcus faecalis with MIC/MBC values of 20 μg/mL and 5 μg/mL, respectively. MTT assay had revealed that HT-ZnO nanoflowers caused a dose-dependent decline in the viability of A549 adenocarcinomic human alveolar basal epithelial cells with an IC50 value of 20.45 μg/mL. The effect of HT-ZnO nanoflowers on the migration and colony formation abilities against the same cells was evaluated as well. In conclusion, zinc oxide nanoflowers were successfully synthesized using methanolic extract of H. triquetrifolium. The resulting particles showed a bactericidal effect against Gram-positiveS. aureus and E. faecalis and a cytotoxic activity against A549 cells.  相似文献   

19.
4-酰基吡唑啉酮类化合物是一类重要的有机配体.其所具有的酮式和烯醇式异构体并存且含有多个配位原子的特性使得该类化合物在与金属离子配位时存在多种配位方式,从而形成单核、同双核、异双核和多核等金属配合物[1-5].  相似文献   

20.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号