首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enantioselective C−H amidation of phosphine oxides by using an iridium(III) catalyst bearing an atropchiral cyclopentadienyl (Cpx) ligand is reported. A very strong cooperative effect between the chiral Cpx ligand and a phthaloyl tert-leucine enabled the transformation. Matched–mismatched cases of the different acid enantiomers are shown. The amidated P-chiral arylphosphine oxides are formed in yields of up to 95 % and with excellent enantioselectivities of up to 99:1 er. Enantiospecific reduction provides access to valuable P-chiral phosphorus(III) compounds.  相似文献   

2.
An enantioselective C?H arylation of phosphine oxides with o‐quinone diazides catalyzed by an iridium(III) complex bearing an atropchiral cyclopentadienyl (Cpx) ligand and phthaloyl tert‐leucine as co‐catalyst is reported. The method allows access to a) P‐chiral biaryl phosphine oxides, b) atropo‐enantioselective construction of sterically demanding biaryl backbones, and also c) selective assembly of axial and P‐chiral compounds in excellent yields and diastereo‐ and enantioselectivities. Enantiospecific reductions provide monodentate chiral phosphorus(III) compounds having structures and biaryl backbones with proven importance as ligands in asymmetric catalysis.  相似文献   

3.
The cyclopentadienyl (Cp) group is a very important ligand for many transition‐metal complexes which have been applied in catalysis. The availability of chiral cyclopentadienyl ligands (Cpx) lags behind other ligand classes, thus hampering the investigation of enantioselective processes. We report a library of chiral CpxIrIII complexes equipped with an atropchiral Cp scaffold. A robust complexation procedure reliably provides CpxIrIII complexes with tunable counterions. In a proof‐of‐concept application, the iodide‐bearing members are shown to be highly selective for enyne cycloisomerization reactions. The dehydropiperidine‐fused cyclopropane products are formed in good yields and enantioselectivities.  相似文献   

4.
Chiral cyclopentadienyl (Cpx) ligands have a large application potential in enantioselective transition‐metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two‐step synthesis of a novel class of chiral Cpx ligands with tunable steric properties that can be readily used for complexation, giving CpxRhI, CpxIrI, and CpxRuII complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl‐derived Cpx ligands.  相似文献   

5.
Chiral sulfoximines with stereogenic sulfur atoms are promising motifs in drug discovery. We report an efficient method to access chiral sulfoximines through a C?H functionalization based kinetic resolution. A rhodium(III) complex equipped with a chiral Cpx ligand selectively participates in conjunction with phthaloyl phenylalanine in the C?H activation of just one of the two sulfoximine enantiomers. The intermediate reacts with various diazo compounds, providing access to chiral 1,2‐benzothiazines with synthetically valuable substitution patterns. Both sulfoximines and 1,2‐benzothiazines were obtained in high yields and excellent enantioselectivity, with s‐values of up to 200. The utility of the method is illustrated by the synthesis of the key intermediates of two pharmacologically relevant kinase inhibitors.  相似文献   

6.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C?H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C?H functionalizations of α,β‐unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.  相似文献   

7.
Reported is an achiral CpxRhIII/chiral carboxylic acid catalyzed asymmetric C?H alkylation of diarylmethanamines with a diazomalonate, followed by cyclization and decarboxylation to afford 1,4‐dihydroisoquinolin‐3(2H)‐one. Secondary alkylamines as well as nonprotected primary alkylamines underwent the transformation with high enantioselectivities (up to 98.5:1.5 e.r.) by using a newly developed chiral carboxylic acid as the sole source of chirality to achieve enantioselective C?H cleavage by a concerted metalation‐deprotonation mechanism.  相似文献   

8.
Enantioselective carboaminations of olefins constitute an attractive strategy for a rapid increase in molecular complexity from readily available starting materials. Reported here is an intermolecular asymmetric carboamination of acrylates using rhodium(III)‐catalyzed alkenyl C?H activations of N‐enoxysuccinimides to generate the nitrogen and carbon portion for the transfer. A rhodium complex equipped with a tailored bulky trisubstituted chiral Cpx ligand ensures carboamination chemoselectivity as well high levels of enantioinduction. The transformation operates under mild reaction conditions at ambient temperatures and provides access to a variety of α‐amino esters in good yields and excellent enantiomeric ratios of >99.5:0.5.  相似文献   

9.
Organometallic half‐sandwich IrIII complexes of the type [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx: Cp* or its phenyl Cpxph or biphenyl Cpxbiph derivatives; N^N: triphenylamine (TPA)‐substituted bipyridyl ligand groups) were synthesized and characterized. The complexes showed excellent bovine serum albumin (BSA) and DNA binding properties and were able to oxidize NADH to NAD+ (NAD=nicotinamide adenine dinucleotide) efficiently. The complexes induced apoptosis effectively and led to the emergence of reactive oxygen species (ROS) in cells. All complexes showed potent cytotoxicity with IC50 values ranging from 1.5 to 7.1 μm toward A549 human lung cancer cells after 24 hours of drug exposure, which is up to 14 times more potent than cisplatin under the same conditions.  相似文献   

10.
Sodium cyclopentadienide reacts as nucleophile with 4,7‐dibromo‐2,1,3‐benzothiadiazole (BTZ) and leads to the new donor‐functionalized ligand CpBTZ. Related quinoxalyl Cp systems have been prepared using Pd‐catalyzed coupling with zincated Cp‐metal complexes. The new ligands comprise two N‐donor atoms; one of them is located in a distal position relative to the metal centre so that it cannotcoordinate in a chelating manner. With CpBTZ ligand derivatives severalmetal complexes have been synthesized. The new chromium(III) complex CpBTZCrCl2 ( 12 ) becomes upon activation an active catalyst for the polymerization of ethylene. Relying on DFT calculations and analysis of spin‐density distribution combined with paramagnetic NMR data a chelating coordination of the CpBTZ ligand is feasible in 12 .  相似文献   

11.
Compounds with stereogenic phosphorus atoms are frequently used as ligands for transition‐metal as well as organocatalysts. A direct catalytic enantioselective method for the synthesis of P ‐chiral compounds from easily accessible diaryl phosphinamides is presented. The use of rhodium(III) complexes equipped with a suitable atropochiral cyclopentadienyl ligand is shown to enable an enantiodetermining C−H activation step. Upon trapping with alkynes, a broad variety of cyclic phosphinamides with a stereogenic phosphorus(V) atom are formed in high yields and enantioselectivities. Moreover, these can be reduced enantiospecifically to P ‐chiral phosphorus(III) compounds.  相似文献   

12.
Rhodium‐catalyzed enantioselective desymmetrizing intramolecular hydrosilylation of symmetrically disubstituted hydrosilanes is described. The original axially chiral phenanthroline ligand (S)‐BinThro (Binol‐derived phenanthroline) was found to work as an effective chiral catalyst for this transformation. A chiral silicon stereogenic center is one of the chiral motifs gaining much attention in asymmetric syntheses and the present protocol provides cyclic five‐membered organosilanes incorporating chiral silicon centers with high enantioselectivities (up to 91 % ee). The putative active RhI catalyst takes the form of an N,N,O‐tridentate coordination complex, as determined by several complementary experiments.  相似文献   

13.
Recent advances in CpxMIII catalysis (M=Co, Rh, Ir) have enabled a variety of enantioselective C(sp2)?H functionalization reactions, but enantioselective C(sp3)?H functionalization is still largely unexplored. We describe an asymmetric C(sp3)?H amidation of thioamides using an achiral CoIII/chiral carboxylic acid hybrid catalytic system, which provides easy and straightforward access to chiral β‐amino thiocarbonyl and β‐amino carbonyl building blocks with a quaternary carbon stereocenter.  相似文献   

14.
The synthesis, characterization, and catalytic performance of iridium(III) catalysts that bear an amide‐pendant cyclopentadienyl ligand ([CpAIrI2]2) is reported. These [CpAIrI2]2 catalysts were obtained from the complexation of a CpA ligand precursor with [Ir(cod)OAc]2 followed by oxidation. Double aromatic homologation reactions of benzamides with alkynes by fourfold C?H activation proceeded in good to high yield with these [CpAIrI2]2 catalysts, demonstrating their superior catalytic performance in this challenging transformation.  相似文献   

15.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

16.
Enantioselective carboaminations of olefins constitute an attractive strategy for a rapid increase in molecular complexity from readily available starting materials. Reported here is an intermolecular asymmetric carboamination of acrylates using rhodium(III)-catalyzed alkenyl C−H activations of N-enoxysuccinimides to generate the nitrogen and carbon portion for the transfer. A rhodium complex equipped with a tailored bulky trisubstituted chiral Cpx ligand ensures carboamination chemoselectivity as well high levels of enantioinduction. The transformation operates under mild reaction conditions at ambient temperatures and provides access to a variety of α-amino esters in good yields and excellent enantiomeric ratios of >99.5:0.5.  相似文献   

17.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   

18.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

19.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

20.
A range of α,β‐unsaturated acids and esters have been selectively reduced to the corresponding saturated acid derivatives by hydrogen transfer. As the reducing agent, formic acid was used in the presence of RhI complexes formed with the powerful chiral ligand Ph‐binepine ( 1 ), an axially chiral binaphthalene‐type monodentate P‐donor ligand. Very high stereoselectivities (up to 97% ee) were obtained in the case of itaconic acid ( 2a ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号