首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first Ni‐catalyzed Suzuki–Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N?C amide bond activation is reported. The reaction tolerates a wide range of electron‐withdrawing, electron‐neutral, and electron‐donating substituents on both coupling partners. The reaction constitutes the first example of the Ni‐catalyzed generation of aryl electrophiles from bench‐stable amides with potential applications for a broad range of organometallic reactions.  相似文献   

2.
The silver‐catalyzed oxidative C(sp3)−H/P−H cross‐coupling of 1,3‐dicarbonyl compounds with H‐phosphonates, followed by a chemo‐ and regioselective C(sp3)−C(CO) bond‐cleavage step, provided heavily functionalized β‐ketophosphonates. This novel method based on a readily available reaction system exhibits wide scope, high functional‐group tolerance, and exclusive selectivity.  相似文献   

3.
α‐Vinylation of phosphonates, phosphine oxides, sulfones, sulfonamides, and sulfoxides has been achieved by selective C?H zincation and copper‐catalyzed C(sp3)?C(sp2) cross‐coupling reaction using vinylphenyliodonium salts. The vinylation transformation proceeds in high efficiency and stereospecificity under mild reaction conditions. This zincative cross‐coupling reaction represents a general alkenylation strategy, which is also applicable for α‐alkenylation of esters, amides, and nitriles in the synthesis of β,γ‐unsaturated carbonyl compounds.  相似文献   

4.
Palladium(0)‐catalyzed deacylative cross‐coupling of aryl iodides and acyldiazocarbonyl compounds can be achieved at room temperature under mild reaction conditions. The coupling reaction represents a highly efficient and general method for the synthesis of aryldiazocarbonyl compounds, which have found wide and increasing applications as precursors for generating donor/acceptor‐substituted metallocarbenes.  相似文献   

5.
Despite recent progress in the catalytic transformation of inert phenol derivatives as alternatives to aryl halides and triflates, attempts at the cross‐coupling of inert phenol derivatives with the C−H bonds of arenes have met with limited success. Herein, we report the rhodium‐catalyzed cross‐coupling of aryl carbamates with arenes bearing a convertible directing group. The key to success is the use of an in situ generated rhodium bis(N‐heterocyclic carbene) species as the catalyst, which can promote activation of the inert C(sp2)−O bond in aryl carbamates.  相似文献   

6.
Iron‐catalyzed cross‐coupling reaction of vinylic ethers with aryl Grignard reagents is described. The reaction proceeded at room temperature with catalytic amounts of an iron salt without the aid of costly ligands and additives. In this catalytic system, vinylic C?O bonds were preferentially cleaved over aromatic C?O bonds of aryl ethers or aryl sulfonates.  相似文献   

7.
Along with amide bond formation, Suzuki cross‐coupling, and reductive amination, the Buchwald–Hartwig–Ullmann‐type amination of aryl halides stands as one of the most employed reactions in modern medicinal chemistry. The work herein demonstrates the potential of utilizing electrochemistry to provide a complementary avenue to access such critical bonds using an inexpensive nickel catalyst under mild reaction conditions. Of note is the scalability, functional‐group tolerance, rapid rate, and the ability to employ a variety of aryl donors (Ar−Cl, Ar−Br, Ar−I, Ar−OTf), amine types (primary and secondary), and even alternative X−H donors (alcohols and amides).  相似文献   

8.
Along with amide bond formation, Suzuki cross‐coupling, and reductive amination, the Buchwald–Hartwig–Ullmann‐type amination of aryl halides stands as one of the most employed reactions in modern medicinal chemistry. The work herein demonstrates the potential of utilizing electrochemistry to provide a complementary avenue to access such critical bonds using an inexpensive nickel catalyst under mild reaction conditions. Of note is the scalability, functional‐group tolerance, rapid rate, and the ability to employ a variety of aryl donors (Ar−Cl, Ar−Br, Ar−I, Ar−OTf), amine types (primary and secondary), and even alternative X−H donors (alcohols and amides).  相似文献   

9.
Transition-metal-catalyzed enantioselective P−C cross-coupling of secondary phosphine oxides (SPOs) is an attractive method for synthesizing P-stereogenic phosphorus compounds, but the development of such a dynamic kinetic asymmetric process remains a considerable challenge. Here we report an unprecedented highly enantioselective dynamic kinetic intermolecular P−C coupling of SPOs and aryl iodides catalyzed by copper complexes ligated by a finely modified chiral 1,2-diamine ligand. The reaction tolerates a wide range of SPOs and aryl iodides, affording P-stereogenic tertiary phosphine oxides (TPOs) in high yields and with good enantioselectivity (average 89.2 % ee). The resulting enantioenriched TPOs were transformed into structurally diverse P-chiral scaffolds, which are highly valuable as ligands and catalysts in asymmetric synthesis.  相似文献   

10.
A visible‐light‐promoted iridium photoredox and nickel dual‐catalyzed cross‐coupling procedure for the formation C?N bonds has been developed. With this method, various aryl amines were chemoselectively cross‐coupled with electronically and sterically diverse aryl iodides and bromides to forge the corresponding C?N bonds, which are of high interest to the pharmaceutical industries. Aryl iodides were found to be a more efficient electrophilic coupling partner. The coupling reactions were carried out at room temperature without the rigorous exclusion of molecular oxygen, thus making this newly developed Ir‐photoredox/Ni dual‐catalyzed procedure very mild and operationally simple.  相似文献   

11.
A novel and efficient palladium‐catalyzed aminocarbonylation of aryl iodides with amides and N‐alkyl anilines has been developed. The reaction tolerates a wide range of functional groups and is a reliable method for the rapid synthesis of a variety of valuable imides and tertiary benzanilides under an atmospheric pressure of CO.  相似文献   

12.
The formation of aryl C−S bonds is an important chemical transformation because aryl sulfides are valuable building blocks for the synthesis of biologically and pharmaceutically active molecules and organic materials. Aryl sulfides have traditionally been synthesized through the transition‐metal‐catalyzed cross‐coupling of aryl halides with thiols. However, the aryl halides used are usually bromides and iodides; readily available, low‐cost aryl chlorides often not reactive enough. Furthermore, the deactivation of transition‐metal catalysts by thiols has forced chemists to use high catalyst loadings, specially designed ligands, high temperatures, and/or strong bases, thus leading to high costs and the incompatibility of some functional groups. Herein, we describe a simple and efficient visible‐light photoredox arylation of thiols with aryl halides at room temperature. More importantly, various aryl chlorides are also effective arylation reagents under the present conditions.  相似文献   

13.
A copper‐catalyzed reductive cross‐coupling reaction of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides was developed. It provides a practical method for efficient and cost‐effective construction of aryl–alkyl and alkyl–alkyl C?C bonds with stereocontrol from readily available substrates. When used in an intramolecular fashion, the reaction enables convenient access to various substituted carbo‐ or heterocycles, such as 2,3‐dihydrobenzofuran and benzochromene derivatives.  相似文献   

14.
Ir‐catalyzed cascade dehydrogenative CH/BH and BH/OH cross‐coupling of carboranyl carboxylic acid with readily available benzoic acid has been achieved, leading to the facile synthesis of previously unavailable carborano‐coumarin in a simple one‐pot process. Two cage B—H, one aryl C—H and one O—H bonds are activated to construct efficiently new B—C and B—O bonds. The cascade cyclization can stop at the first B—H/C—H cross‐coupling step by tuning the reaction conditions, resulting in a series of α‐carboranyl benzoic acid and aryl carborane derivatives. Control experiments indicate that B—H/C—H dehydrocoupling proceeds preferentially over B—H/O—H dehydrocoupling, and both directing groups and oxidants are crucial for this reaction. An iridium(V) intermediate is proposed to be involved in the catalytic cycle.  相似文献   

15.
Readily accessible dibenzothiophene sulfoximine is an NH3 surrogate allowing the preparation of free anilines by copper‐catalyzed cross‐coupling reactions with aryl iodides or amides followed by radical S−N bond cleavage. The one‐pot/two‐step reactions sequence leads to the aminated products in good yields.  相似文献   

16.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

17.
A Pd‐catalyzed cross‐coupling of aryl trifluoroborates with arylsulfonyl chlorides has been successfully achieved. This transformation is a new method for the Suzuki–Miyaura‐type reaction of aryl trifluoroborates via the cleavage of C? S bond, thus providing an alternative synthesis of biaryls. The reported cross‐coupling reactions are tolerant to many common functional groups regardless of electron‐donating or electron‐withdrawing nature, making these transformations attractive alternatives to the traditional Suzuki–Miyaura coupling approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Organocatalysis has emerged as an effective strategy for chemical synthesis. Within this area, phosphine‐catalyzed coupling reactions have attracted considerable attention because of their versatility and wide range of applications in the construction of new C?C bonds. Recently, various experimental studies on the phosphine‐catalyzed coupling reaction of allenes have been reported, and mechanistic and computational studies have also progressed considerably. As a nucleophile, phosphine can react with an allene to form a zwitterionic phosphoniopropenide intermediate. After stepwise cycloaddition and proton transfer, the phosphine catalyst can be regenerated by C?P bond cleavage. Alternatively, the zwitterionic phosphoniopropenide intermediate could also be protonated by a Brønsted acid to generate a phosphonium intermediate, which can be used to construct new C?C bonds by electrophilic addition. In this review, we have summarized details of mechanistic studies of phosphine‐catalyzed allene coupling reactions that follow these two reaction modes. In addition to detailing the reaction pathway, the regioselectivity and diastereoselectivity of the phosphine‐catalyzed allene coupling reaction are also discussed in this review.  相似文献   

19.
Copper-catalyzed C–P cross coupling of phosphonate esters with arylboronic acids has been developed. The reaction provided an efficient method for aryl phosphonates under mild conditions.  相似文献   

20.
A highly efficient and mild palladium‐catalyzed cross‐coupling of arylsulfonyl hydrazides and aryl bromides for the selective synthesis of unsymmetrical biaryls has been developed. This methodology has the advantages of easily accessible starting materials, functional group tolerance and a wide range of substrates, which provide rapid access to biaryls derivatives. In this protocol, abundant and stable aryl bromides serve as the aryl sources by coupling reaction of the aryl group generated from arylsulfonyl hydrazides via in situ release of nitrogen and sulfur dioxide. No external oxidants or acids are needed for this kind of transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号