首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amplification of molecular motions into the macroscopic world has great potential in the development of smart materials. Demonstrated here is an approach that integrates mechanically interlocked molecules into complex three‐dimensional (3D) architectures by direct‐write 3D printing. The design and synthesis of polypseudorotaxane hydrogels, which are composed of α‐cyclodextrins and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO‐PPO‐PEO) triblock copolymers, and their subsequent fabrication into polyrotaxane‐based lattice cubes by 3D printing followed by post‐printing polymerization are reported. By switching the motion of the α‐cyclodextrin rings between random shuttling and stationary states through solvent exchange, the polyrotaxane monolith not only exhibits macroscopic shape‐memory properties but is also capable of converting the chemical energy input into mechanical work by lifting objects against gravity.  相似文献   

2.
Thermocompression (with also extrusion and injection molding) is a classical polymer shaping manufacturing, but it does not easily allow designing sophisticated shapes without using a complex mold, on the contrary to 3D printing (or polymer additive manufacturing), which is a very flexible technique. Among all 3D printing techniques, fused deposition modeling is of high potential for product manufacturing, with the capability to compete with conventional polymer processing techniques. This is a quite low cost 3D printing technique, but the range of filaments commercially available is limited. However, in some specific 3D printing processes, no filaments are necessary. Polymers pellets feed directly the printing nozzle allowing to investigate many polymeric matrices with no commercial limitation. This is of high interest for the design of flame‐retarded materials, but literature is scarce in that field. In this paper, a comparison between thermocompression and 3D printing processes was performed on both neat ethylene‐vinyl acetate (EVA) copolymer and EVA flame retarded with aluminum triHydroxyde (ATH) containing different loadings (30 or 65 wt%) and with expandable graphite (EG), ie, EVA/ATH (30 wt%), EVA/ATH (65 wt%), and EVA/EG (10 wt%), respectively. Morphological comparisons, using microscopic and electronic microprobe analyses, revealed that 3D printed plates have lower apparent density and higher porosity than thermocompressed plate. The fire‐retardant properties of thermocompressed and 3D printed plates were then evaluated using mass loss calorimeter test at 50 kW/m2. Results highlight that 3D printing can be used to produce flame‐retardant systems. This work is a pioneer study exploring the feasibility of using polymer additive manufacturing technology for designing efficient flame‐retarded materials.  相似文献   

3.
《Electroanalysis》2017,29(11):2444-2453
Heavy metals, being one of the most toxic and hazardous pollutants in natural water, are of great public health concern. Much effort is still being devoted to the optimization of the electroanalytical methods and devices, particularly for the development of novel electrode materials in order to enhance selectivity and sensitivity for the analysis of heavy metals. The ability of 3D‐printing to fabricate objects with unique structures and functions enables infinite possibilities for the creation of custom‐made electrochemical devices. Here, stainless steel 3D‐printed electrodes (3D‐steel) have been tested for individual and simultaneous square wave anodic stripping analysis of Pb and Cd in aqueous solution. Electrodeposition methods have also been employed to modify the steel electrode surface by coating with a thin gold film (3D−Au) or a bismuth film (3D−Bi) to enhance the analytical performance. All 3D‐printed electrodes (3D‐steel, 3D−Au and 3D−Bi) have been tested against a conventionally employed glassy carbon electrode (GC) for comparison. The surface modified electrodes (3D−Au and 3D−Bi) outperformed the GC electrode demonstrating higher sensitivity over the studied concentration ranges of 50–300 and 50–500 ppb for Pb and Cd, respectively. Owing to the bismuth property of binary alloys formation with heavy metals, 3D−Bi electrode displayed well‐defined, reproducible signals with relatively low detection limits of 3.53 and 9.35 ppb for Pb and Cd, respectively. The voltammetric behaviour of 3D−Bi electrode in simultaneous detection of Pb and Cd, as well as in individual detection of Pb in tap water was also monitored. Overall, 3D‐printed electrodes exhibited promising qualities for further investigation on a more customizable electrode design.  相似文献   

4.
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self‐assembled small‐molecule‐based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small‐molecule‐based inks were 3D‐printed, and their superstructures were refined by post‐printing hierarchical co‐assembly. Through spatial and temporal control of individual molecular events from the nano‐ to the macroscale, fine‐tuned macroscale features were successfully installed in the monoliths.  相似文献   

5.
The cellulose fiber was extracted from the abandoned crop sugarcane bagasse (SCB) by means of chemical treatment methods. Poly(lactic acid) (PLA) bio‐based composites with SCB were prepared through fused deposition modeling (FDM) 3D‐printing technology, and the morphologies, mechanical properties, crystallization properties, and thermal stability of 3D‐printed composites were investigated. Compared with the neat PLA, the incorporation of SCB into PLA reduces the tensile strength and flexural strength of 3D‐printed samples but increases the flexural modulus. The difference in tensile performance and bending performance is that the tensile strength of 3D‐printed samples is best when the SCB content is 6 wt%, while the flexural modulus continuously decreases as the SCB content increases. Furthermore, the effects of various printing methods on the tensile performance of 3D‐printed samples were explored via modifying G‐code of 3D models. The results indicate that the optimum SCB fiber content is identical for all printing methods except method “vertical.” Due to the fibers and molecular chains are oriented to varying degrees with altering raster angle in 3D‐printed samples, the fully oriented sample printed by method “parallel” has a better tensile strength. Besides, SCB exhibits enough high thermal decomposition temperature to meet requirements for melt extrusion processing of PLA composites, and SCB fiber is capable of promoting the crystallization of PLA.  相似文献   

6.
The bio‐based polyester, poly(ethylene 2,5‐furandicarboxylate) (PEF), was modified by 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol (CBDO) via copolymerization and a series of copolyesters poly(ethylene‐co‐2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol 2,5‐furandicarboxylate)s (PETFs) were prepared. After their chemical structures and sequence distribution were confirmed by nuclear magnetic resonance (1H‐NMR and 13C‐NMR), their thermal, mechanical, and gas barrier properties were investigated in detail. Results showed that when the content of CBDO unit in the copolyesters was increased up to 10 mol%, the completely amorphous copolyesters with good transparency could be obtained. In addition, with the increasing content of CBDO units in the copolyesters, the glass transition temperature was increased from 88.9 °C for PET to 94.3 °C for PETF‐23 and the tensile modulus was increased from 3000 MPa for PEF to 3500 MPa for PETF‐23. The barrier properties study demonstrated that although the introduction of CBDO units would increase the O2 and CO2 permeability of PEF slightly, PECF‐10 still showed better or similar barrier properties compared with those of PEN and PEI. In one word, the modified PEF copolyesters exhibited better mechanical properties, higher glass transition temperature, good barrier properties, and better clarity. They have great potential to be the bio‐based alternative to the popular petroleum‐based poly(ethylene terephthalate) (PET) when used as the beverage packaging materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3298–3307  相似文献   

7.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a valuable tool for synthesizing macromolecules with controlled topologies and diverse chemical functionalities. However, the application of RAFT polymerization to additive‐manufacturing processes has been prevented due to the slow polymerization rates of typical systems. In this work, we developed and optimized a rapid visible (green) light mediated RAFT polymerization process and applied it to an open‐air 3D printing system. The reaction components are non‐toxic, metal free and environmentally friendly, which tailors these systems toward biomaterial fabrication. The inclusion of RAFT agent in the photosensitive resin provided control over the mechanical properties of 3D printed materials and allowed these materials to be post‐functionalized after 3D printing. Additionally, photoinduced spatiotemporal control of the network structure provided a one‐pass approach to 4D printed materials. This RAFT‐mediated 3D and 4D printing process should provide access to a range of new functional and stimuli‐responsive materials.  相似文献   

8.
Summary: The fabrication of polymer diodes on a glass substrate by an ink‐jet printing technique is reported. Both an n‐type semiconductive polymer, poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐(1‐cyanovinylene)phenylene] (CN‐PPV), and a p‐type semiconductive polymer, polypyrrole (PPy) or poly(3,4‐ethylenedioxythiophene) (PEDOT), were printed through a piezoelectric ink‐jet printer. The printed CN‐PPV/PPy and CN‐PPV/PEDOT diodes showed good rectifying characteristics. These results indicate the potential of the low‐cost ink‐jet printing technique to produce polymer microelectronic devices and circuits.

Schematic diagram of the printed polymer diode  相似文献   


9.
We described the curcumin‐loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three‐dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(ε‐caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2‐trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross‐linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D‐printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.  相似文献   

10.
The poly‐N‐isopropylacrylamide intelligent hydrogel actuators with high mechanical strength and efficient temperature responses were successfully prepared via molding and three‐dimensional (3D) printing. Addition of nanofibrillated cellulose (NFC) effectively improved the crosslinking density and viscosity of hydrogels, enhancing the mechanical strength and 3D printable property. Based on sufficient polymerization on interface, bilayer hydrogel actuator prepared via molding exhibited efficient bending/unbending deformations. Bending degree in poikilothermy temperature ranging from 25°C to 55°C was higher than that in constant temperature of 55°C. Inspired by the rheology regulation of NFC, 3D printing intelligent hydrogel actuators with NFC content of 10 mg/mL were polymerized efficiently by ultraviolet irradiation. Self‐driven deformation characteristics of 3D printed intelligent hydrogels actuators were regulated via printing parameters including angle, width and length ratio and filling rate of the layered network structure model. The prepared hydrogel material system with molding and 3D printing ability provided material candidates for design and preparation of intelligent soft actuator and robot.  相似文献   

11.
Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.  相似文献   

12.
We present a low‐cost mechanized system fabricated using fused deposition modelling 3D‐printing technology to manipulate microvolumes and perform injections on an electrochemical cell in wall‐jet configuration. As a proof‐of‐concept, the amperometric detection of paracetamol (model analyte) on a screen‐printed electrode using 0.5 μL aliquots resulted in highly reproducible responses (RSD <3 %). Moreover, handling of microliter aliquots of butylhydroxytoluene (phenolic antioxidant) and 2,2‐diphenyl‐2‐picrylhydrazyl (DPPH) to promote the radical‐scavenging reaction to determine antioxidant capacity by electrochemical detection of residual DPPH was demonstrated (time‐controlled reaction). A final application of the system was devoted to the analysis of cocaine and a common adulterant found in seized samples. The mechanized 3D‐printed analytical platform is capable to execute diverse sample preparation steps on board by handling microliter aliquots and subsequent electrochemical detection. 3D‐printing technology enabled the fabrication of a versatile and low‐cost (<U$200) mechanized system accessible to general chemistry labs.  相似文献   

13.
Tri‐block copolymers of linear poly(ethylene glycol) (PEG) and hyperbranched poly‐3‐ethyl‐3‐(hydroxymethyl)oxetane (poly‐TMPO) are reported. The novel dumb‐bell shaped polyethers were synthesized in bulk with cationic ringopening polymerization utilizing BF3OEt2 as initiator, via drop‐wise addition of the oxetane monomer. The thermal properties of the materials were successfully tuned by varying the amount of poly‐TMPO attached to the PEG‐chains, ranging from a melting point of 54 °C and a degree of crystallinity of 76% for pure PEG, to a melting point of 35 °C and a degree of crystallinity of 12% for the polyether copolymer having an average of 14 TMPO units per PEG chain. The materials are of relatively low polydispersity, with Mn/Mw ranging from 1.2 to 1.4. The materials have been evaluated for usage with the energetic oxidizer ammonium dinitramide. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6191–6200, 2009  相似文献   

14.
《先进技术聚合物》2018,29(6):1586-1602
Three‐dimensional printing (3DP) technologies, which are sets of powerful deposition methods employed to fabricate 3D objects with materials in the fields of material sciences and engineering, biomedical and biocompatible structural components, automotive, aviation, and polymers, among others, are currently rapidly developing manufacturing technologies. The methods have significant advantages, which include designing flexibility, enhanced geometrical freedom, low cost, and net shape manufacture, among others, over the traditional “subtractive” method. This review highlights the major 3D printing techniques, especially in the fields of advanced polymeric material fabrication and engineering, as well as the synergy in the incorporation of different types of polymeric materials and composites in a process that will lead to an enhancement of dimensional accuracy for 3D technologies. Furthermore, composite ink systems especially polymer‐based and hydrogel‐based in tissue engineering applications are also discussed.  相似文献   

15.
3D printing techniques allow the laboratory‐scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high‐throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale‐up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase‐pure samples of coordination polymers MIL‐96 and HKUST‐1, in yields comparable to synthesis in traditional apparatus.  相似文献   

16.
3D printing techniques allow the laboratory‐scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high‐throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale‐up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase‐pure samples of coordination polymers MIL‐96 and HKUST‐1, in yields comparable to synthesis in traditional apparatus.  相似文献   

17.
Many coating materials have been studied to prevent surgical site infections (SSIs). However, antibacterial coating on surfaces show weak adhesion using the traditional titanium (Ti) cage, resulting in low efficacy for preventing SSIs after spinal surgery. Herein, a 3D‐printed Ti cage combined with a drug‐releasing system is developed for in situ drug release and bacteria killing, leading to prevention of SSIs in vitro and in vivo. First, a 3D‐printed Ti cage is designed and prepared by the Electron Beam Melting (EBM) method. Second, polyvinyl alcohol (PVA) containing hydrophilic vancomycin hydrochloride (VH) is scattered across the surface of 3D‐printed porous Ti (Ti‐VH@PVA) cages. Ti‐VH@PVA cages show an efficient drug‐releasing profile and excellent bactericidal effect for three common bacteria after more than seven days in vitro. In addition, Ti‐VH@PVA cages exhibit reliable inhibition of inflammation associated with Staphylococcus aureus and effective bone regeneration capacity in a rabbit model of SSIs. The results indicate that Ti‐VH@PVA cages have potential advantages for preventing SSIs after spinal surgery.  相似文献   

18.
《先进技术聚合物》2018,29(2):867-873
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal–organic framework materials (MOFs) have been the focus of many such studies as they are categorized for their large internal surface areas. We have addressed one of the major shortcomings of MOFs (their processibility) by creating and 3D printing a composite of acrylonitrile butadiene styrene (ABS) and MOF‐5, a prototypical MOF, which is often used to benchmark H2 uptake capacity of other MOFs. The ABS‐MOF‐5 composites can be printed at MOF‐5 compositions of 10% and below. Other physical and mechanical properties of the polymer (glass transition temperature, stress and strain at the breaking point, and Young's modulus) either remain unchanged or show some degree of hardening due to the interaction between the polymer and the MOF. We do observe some MOF‐5 degradation through the blending process, likely due to the ambient humidity through the purification and solvent casting steps. Even with this degradation, the MOF still retains some of its ability to uptake H2, seen in the ability of the composite to uptake more H2 than the pure polymer. The experiments and results described here represent a significant first step toward 3D printing MOF‐5‐based materials for H2 storage.  相似文献   

19.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   

20.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号