首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled polydopamine (PDA)-coated TiO2 composite nanofibers (NFs) were successfully fabricated via a facile electrospinning process and exposing TiO2 NFs into a slightly alkaline dopamine solution. Chemical composition, structural morphology, and photocatalytic degradation property of as-prepared TiO2 NFs and PDA-coated TiO2 composite NFs were characterized by Fourier transfer infrared, X-ray photoelectron spectra, transmission electron microscopy, UV-vis diffuse reflectance spectra, and photocatalytic degradation experiments. The results indicated that the core-shell TiO2@PDA composite NFs were successfully prepared and the thickness of PDA shell was highly controlled within several nanometers. And obtained TiO2@PDA composite NFs exhibited improved photocatalytic performance after PDA coating, which is attributed to the photosensitization of PDA shell. Moreover, with increased pH values of initial solution, both absorption capacity in the dark and photocatalytic performance of TiO2@PDA composite NFs showed significant improvement. Additionally, the obtained composite NFs showed different degrees of enhancement in photocatalytic performance based on different dyes, which is related to the “bait” effect of PDA shell. Comparing with anionic dyes, TiO2@PDA composite NFs tended to adsorb and degrade more cationic dye molecules. It is anticipated that the fabricated composite NFs with controlled core-shell structure have great potential to be applied for organic pollutants removal, especially cationic dyes.  相似文献   

2.
3.
We perform a study of the localized surface plasmon (LSP) modes of a gold nano shell having a silica core by means of discrete dipole approximation (DDA) and spherical harmonics transform for selected wavelengths. We demonstrate an efficient solution for the near and intermediate field terms by the dyadic Green function approach and determine the optical extinction efficiency by the far field term. Using this approach, we combine the advantages of a spectral analysis along with a DDA flexibility to solve an arbitrary shaped model and demonstrate the LSP dominant mode wavelength dependency. Our approach provides a metric which may be used to quantify the effects of minor changes in the model structure, or the external dielectric environment, in optical experiments. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

5.
The DNA was determined based on resonance light scattering (RLS) spectrometry and the localized surface plasmon resonance. The gold bipyramids were used as the probes and synthesized by a seed-mediated method. Cetyltrimethylammonium bromide was used as stabilizing agent. DNA can be bound to the gold bipyramids due to electrostatic interaction and aggregates, which results in a strong enhancement of the RLS intensity. Under the optimal conditions, the intensity of RLS is directly proportional to the concentration of DNA in the range from 0.1 to 2.0 μg mL(-1).  相似文献   

6.
To effectively address environmental pollution, we synthesized Au-loaded ZnO nanocomposites and applied for the photocatalytic degradation of 2-chlorophenol (2-CP) under visible light irradiation. The as-prepared nanophotocatalysts delivered much improved photocatalytic degradation activities as compared to the bare ZnO nanoparticles and 32% of the pollutant was degraded with 2AuZnO in 1 hr. These improved photoactivities are attributed to the extended visible light absorption due to the surface plasmon resonance property of the loaded Au nanoparticles. Moreover, Au nanoparticles played important role in charge separation by inducting excited electrons to the conduction band of ZnO photocatalyst and surface catalysis as confirmed from photoluminescence spectra and amount of the generated hydroxyl radicals. The trapping experiments confirmed that positive holes were the major degrading species during the photocatalytic degradation of 2-CP. This work provides a feasible way to improve the photocatalysis by introducing a proper amount of noble metals over the surface of semiconductor photocatalysts.  相似文献   

7.
An enhanced sensitive biosensor has been developed to detect biological targets by tailoring the localized surface plasmon resonance property of core–shell gold nanorods. In this new concept, a shell layer is produced on gold nanorods by generating a layer of chalcogenide on the gold nanorod surface after attachment of the recognition reagent, namely, goat IgG and antigen of schistosomiasis japonica. The bioactivity of these attached biomolecules is retained and the sensitivity of this biosensor is thus enhanced significantly. The plasmonic properties of the gold nanorods attached with the biomolecules can be adjusted and the plasmon resonance wavelength can be red-shifted up to several hundred nanometers in the visible or near infrared (NIR) region, which is extremely important to biosensing applications. This leads to a lager red-shift in the localized surface plasmon resonance absorption compared to the original gold nanorod-based sensor and hence offers greatly enhanced sensitivity in the detection of schistosomiasis japonica. The human serum infected with schistosomiasis japonica diluted to 1:50,000 (volume ratio, serum/buffer solution) can be detected readily. The technique offers enhanced sensitivity and can be easily extended to other sensing applications based on not only immuno-recognition but also other types of specific reactions.  相似文献   

8.
We report here on the fabrication and characterization of stable thin films of amorphous silica (SiO(x)) deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using the plasma-enhanced chemical vapor deposition (PECVD) technique. The resulting surfaces were characterized using atomic force microscopy (AFM), ellipsometry, contact angle measurements, and surface plasmon resonance (SPR). AFM analysis indicates that homogeneous films of silica with low roughness were formed on the gold surface. The deposited silica films showed excellent stability in different solvents and in piranha solution. There was no significant variation in the thickness or in the SPR signal after these harsh treatments. The Au/SiO(x) interfaces were investigated for their potential applications as new surface plasmon resonance sensor chips. Silica films with thicknesses up to 40 nm allowed visualization of the surface plasmon effect, while thicker films resulted in the loss of the SPR characteristics. SPR allowed further the determination of the silica thickness and was compared to ellipsometric results. Chemical treatment of the SiO(x) film with piranha solution led to the generation of silanol surface groups that have been coupled with a trichlorosilane.  相似文献   

9.
光催化固氮是最具潜力的人工光合过程之一,也是有望取代工业Haber-Bosch方法实现氨的绿色合成的清洁能源技术之一.由于氮气分子还原为氨需要较高的还原电位,导致大部分常规的半导体材料的导带能级不能满足固氮反应的热力学要求.同时,固氮光催化剂普遍存在光响应波段窄、表面催化活性低、太阳光向氨的转化效率低等问题.缺陷工程是目前制备高效固氮光催化剂的最有效的途径之一.在催化剂中引入缺陷可以带来两个方面的好处:(1)促进氮气分子在缺陷位点上的化学吸附和活化,从而降低反应能垒;(2)拓宽催化剂的太阳光响应波段,提高对太阳光的利用效率.等离激元效应来自于自由载流子的集体振荡,广泛存在于金属纳米结构中.尽管金属等离激元纳米材料在光催化中也有广泛的应用,可以通过等离激元增强的光吸收和散射、热载流子传输以及等离激元共振能量传递等机理提高太阳能转化效率,但其能量转化效率仍有限,多用于弥补半导体材料的弱点.研究发现,一些半导体纳米材料在可见光和近红外光范围表现出优异的等离激元共振吸收.相比等离激元金属纳米材料,这些半导体的等离激元共振效应的调控手段更加丰富.等离激元半导体材料普遍具有较高的缺陷浓度、非常宽的光响应波段,因而是理想的固氮光催化剂.本文利用具有还原性的气氛处理溶剂热法制备的SrMoO4,通过引入高浓度的氧空位,实现了可调控的稳定的等离激元共振吸收.制备的SrMoO4在可见光和近红外光范围具有强的等离激元吸收,其共振吸收峰的中心位置可从520调到815 nm,显著拓宽了SrMoO4的光响应波段,而样品的本征吸收边仍然位于310 nm.研究发现,氢气还原没有改变Sr的氧化态,而是将Mo6+还原成Mo5+.紫外光电子能谱分析结果表明,高温氢气处理没有改变SrMoO4样品的导带和价带能级.电子顺磁共振研究结果表明,氢气处理在SrMoO4中形成了大量的氧空位.Mott-Schottky测试结果发现,氢气处理后的样品的载流子浓度高达~2.0×1020 cm-3.具有等离激元效应的SrMoO4表现出优异的可见光固氮性能,相比不具有等离激元效应的SrMoO4,在入射光波长大于420 nm的可见光照射下,在氢气气氛中处理10 min,3,6和8h的SrMoO4样品的氨的产率分别为41.2,36.3,24.5和20.8 μg gcat-1 h-1.其增强光催化活性主要来源于更宽的太阳光吸收波段、等离激元激发产生的热载流子和丰富的缺陷活性位点.一方面,SrMoO4具有较高的导带能级,本征激发形成的导带电子能在热力学上将氮气分子还原为氨;另一方面,等离激元激发产生的热载流子具有较高的能量,能够越过固液界面的肖特基能垒,将吸附在催化剂表面缺陷处的氮气分子还原为氨.但是,尽管缺陷在光催化固氮中展现出多方面的优点,其在半导体中的浓度仍需进一步的优化.  相似文献   

10.
11.
Controlled assembly of gold nanorods induced by Na(3)PO(4) leads to a significant amplification of localized surface plasmon resonance (LSPR) signals. The strong affinity between Au and Hg alters the coupled LSPR signals due to the amalgamation of Hg and Au. This allows detection of Hg in aqueous solutions with ultra-high sensitivity and excellent selectivity, without sample pretreatment.  相似文献   

12.
The paper reports on the deposition of thin antimony (Sb)-doped SnO2 films onto gold and silver substrates using magnetron sputtering. The influence of the SnO2:Sb film on the electrochemical and surface plasmon resonance properties is investigated. The best results in terms of stability, electrochemical and plasmonic characteristics are obtained for SnO2:Sb of 8.5 nm thickness deposited on silver substrates.  相似文献   

13.
14.
The intense colors of noble metal nanoparticles have inspired artists and fascinated scientists for hundreds of years. In this review, we describe refractive index sensing platforms based on the tunability of the localized surface plasmon resonance (LSPR) of arrays of silver nanoparticles and of single nanoparticles. Specifically, the color associated with single nanoparticles and surface-confined nanoparticle arrays will be shown to be tunable and useful as platforms for chemical and biological sensing. Finally, the LSPR nanosensor will be compared to traditional, flat surface, propagating surface plasmon resonance sensors.  相似文献   

15.
The distance dependence of the localized surface plasmon (SP) extinction of discontinuous gold films is a crucial issue in the application of transmission surface plasmon resonance (T-SPR) spectroscopy to chemical and biological sensing. This derives from the usual sensing configuration, whereby an analyte binds to a selective receptor layer on the gold film at a certain distance from the metal surface. In the present work the distance sensitivity of T-SPR spectroscopy of 1.0-5.0 nm (nominal thickness) gold island films evaporated on silanized glass substrates is studied by using coordination-based self-assembled multilayers, offering thickness tuning in the range from approximately 1 to approximately 15 nm. The morphology, composition and optical properties of the Au/multilayer systems were studied at each step of multilayer construction. High-resolution scanning electron microscopy (HRSEM) showed no apparent change in the underlying Au islands, while atomic force microscopy (AFM) indicated flattening of the surface topography during multilayer construction. A regular growth mode of the organic layers was substantiated by X-ray photoelectron spectroscopy (XPS). Transmission UV-visible spectra showed an increase of the extinction and a red shift of the maximum of the SP band upon addition of organic layers, establishing the distance dependence of the Au SP absorbance. The distance sensitivity of T-SPR spectroscopy can be varied by using characteristic substrate parameters, that is, Au nominal thickness and annealing. In particular, effective sensitivity up to a distance of at least 15 nm is demonstrated with 5 nm annealed Au films. It is shown that intensity measurements, particularly in the plasmon intensity change (PIC) presentation, provide an alternative to the usually measured plasmon band position, offering good accuracy and the possibility of measuring at a single wavelength. The present distance sensitivity results provide the basis for further development of T-SPR transducers based on receptor-coated Au island films.  相似文献   

16.
We report in this study the presence of Janus particles, which are candidates for use with electronic color papers. We used negatively charged polystyrene particles (370 nm) as the core particles, and gold was then sputtered onto their packed monolayer under several conditions. The sputtered particles were next redispersed into the aqueous medium by gentle sonication. Gold nanoparticles localized on one side of the cores could also serve as seeds for subsequent shell growth by electroless gold plating. Through these treatments, a series of well-dispersed Janus particles were obtained with gold nanostructures of different size and shape only on one side. Their dispersions showed different colors originating from the surface plasmon resonance absorption of gold nanoparticles localized on the hemisphere. The particles obtained by this approach have potential applications such as in sensors and electronic color paper.  相似文献   

17.
《Progress in Surface Science》2007,82(4-6):378-387
In this contribution, for the first time precise in situ measurements of the ultrafast dephasing time T2 of localized surface plasmon polariton resonances in colloidal gold nanoparticles with the objective to identify the involved damping mechanisms are presented. T2 is an essential parameter that does not only allow one to determine the field enhancement factor that is of great importance for many applications of nanoparticles, but also reflects the role of different dephasing mechanisms. The most essential result is the observation of a chemical interface damping which causes a dramatic shortening of the dephasing time. While T2∞ = 9.4 fs can be obtained from the bulk dielectric function, the value shrinks to 3.7 fs if the nanoparticles are in aqueous solution.  相似文献   

18.
It has been accepted that covalent immobilization of C3b on artificial materials is the most important step to initiate the complement activation. However, there are few studies that have directly demonstrated covalent immobilization of C3b on artificial surfaces. In this study, model thin layers were prepared by the self-assembled monolayer method to produce a surface covered with hydroxyl or methyl groups using mercaptododecane (CH3-SAM) and mercaptoundecanol (OH-SAM). Interactions of the complement system with the model surfaces were studied using a surface plasmon resonance instrument. The OH-SAM immobilized C3b, resulting in activating of the complement system through the alternative pathway in Veronal-buffered saline, but this surface did not activate the classical pathway. However, the OH-SAM could not activate the alternative pathway in Veronal-buffered saline containing 10 mM EGTA and 2 mM MgCl2 that is believed not to interfere with the activation of the alternative pathway. The hydrophobic CH3-SAM surface could not activate the classical pathway, but activated the alternative pathway, although the extent was small.  相似文献   

19.
Gold nanoislands interact with gaseous ozone to produce a surface plasmon resonance shift, similarly to the interaction of ozone and gold nanoparticles in water. Gold nanoislands are produced by sputtering, which significantly simplifies the synthesis and produces controlled size for the gold nanoislands. The shift of surface plasmon resonance peak was monitored while gold nanoislands were exposed to variable concentration of gaseous ozone. The shift was then correlated with ozone concentration. Our current results indicate sensing gaseous ozone at concentration of as low as 20 μg/L is achievable. Gold nanoislands were reversed to their original wavelength and were able to cycle between the wavelengths as ozone was introduced and removed. Potentially, this system can be useful as a sensor that identifies the presence of ozone at low part-per-billion concentrations of ozone in gaseous media.  相似文献   

20.
The use of Au/SiO(x) interfaces for the investigation of DNA hybridization using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) simultaneously is demonstrated. Standard glass chemistry was used to link single-stranded DNA (ss-DNA) on aldehyde-terminated Au/SiO(x) interfaces. The layer thickness and amount of grafted oligonucleotides (ODNs) were calculated from SPR on the basis of a multilayer system of glass/Ti/Au/SiO(x)/grafted molecule. Capacitance and resistance values of the modified interface before and after hybridization were calculated from EIS data using an equivalent circuit and allowed the affinity rate constant, K(A) = 4.07 x 10(5) M(-1), to be determined. The EIS results were comparable to those obtained by SPR hybridization kinetics recorded in parallel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号