共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mohammad Ali Ghasemzadeh Boshra Mirhosseini‐Eshkevari Mohammad Hossein Abdollahi‐Basir 《应用有机金属化学》2019,33(1)
A novel and simple approach for the efficient and rapid synthesis of pyrano[2,3‐c]‐pyrazoleshas been accomplished via the four‐component condensation reaction of malononitrile, hydrazine hydrate, ethyl acetoacetate, and substituted aldehydes using MIL‐53(Fe) metal–organic framework (MOF) as a catalyst in ethanol at room temperature. Recycling studies have shown that the MIL‐53(Fe) can be readily recovered and reused six times without significant loss of its activity. The present protocol offers the advantages including short reaction times, simple workup, high yields, elimination of toxic solvents, no chromatographic purification and recoverability of the catalyst. Also, the catalyst was fully characterized by SEM, EDX, FT‐IR, XRD, TGA and TEM analysis. 相似文献
3.
In the present study, the synthesis of mordenite zeolite/MIL‐101(Cr) metal–organic framework (MOF) composite [MOR/MIL‐101(Cr)] using the ship in a bottle method was suggested. The properties of prepared composite and individual MOF and MOR zeolite were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption measurement, and thermogravimetric analysis (TGA). The XRD results indicated diffraction peaks for each compound (MOR and MOF) in composite. The SEM and TEM images showed the formation of plates MOR (with size of 2.5 × 3 μm) along with spherical particles MIL‐101. The Brunauer–Emmett–Teller results showed that the surface area of the composite was smaller than individual MOF and MOR zeolite. Based on TGA plots, the hybrid zeolite/MOF composite was more thermally stable compared with the isolated MIL‐101(Cr). The composite was functionalized by post‐synthetic modification to obtain acid–base bifunctionality (H‐MOR/MIL‐101‐ED) for the synthesis of chromene derivatives. The acidity from framework Al‐O(H)‐Si sites in MOR and basicity from amine groups in MIL‐101 were obtained by post‐synthetic modification. 相似文献
4.
5.
Afsaneh Marandi Shahram Tangestaninejad Majid Moghadam Valiollah Mirkhani Adam Mechler Iraj Mohammadpoor‐Baltork Farnaz Zadehahmadi 《应用有机金属化学》2018,32(2)
A heterogeneous catalyst was synthesized by encapsulation of a Keggin‐type heteropolytungstate, potassium dodecatungstocobaltate trihydrate, K5[CoW12O40]·(Co‐POM), into chromium(III) terephthalate (MIL‐101). Encapsulation was achieved via a ‘build bottle around ship’ strategy in aqueous media, following a hydrothermal method. The structure of the resulting crystalline solid was characterized using X‐ray diffraction, correlated with Fourier transform infrared and UV–visible spectroscopy. The metal content was analysed using optical emission spectroscopy. Transmission electron microscopy was used to measure particle size and N2 adsorption in a Brunauer–Emmett–Teller instrument to characterize the specific surface area. The catalytic activity was investigated using methanolysis of epoxides under mild conditions as a test reaction. The turnover frequency of the heterogeneous Co‐POM@MIL‐101 catalyst was more than 20 times higher than that of the homogeneous Co‐POM catalyst. The Co‐POM@MIL‐101 catalyst was reused several times with negligible leaching of Co‐POM and with no considerable loss of its initial efficiency. The simplicity of preparation, extraordinary stability and high reactivity make Co‐POM@MIL‐101 an exceptional catalytic matrix that is easily separable from reaction media. 相似文献
6.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity. 相似文献
7.
Basic isoreticular metal–organic framework (IRMOF‐3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction 下载免费PDF全文
A catalytic amount of the basic metal–organic framework (IRMOF‐3) with organic substrates was found to be an efficient, selective and waste‐free green approach for the unsymmetrical Hantzsch coupling reaction. The catalyst can be isolated from the reaction mixture and reused at least four times. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
Niloufar Afzali Shahram Tangestaninejad Majid Moghadam Valiollah Mirkhani Adam Mechler Iraj Mohammadpoor‐Baltork Reihaneh Kardanpour Farnaz Zadehahmadi 《应用有机金属化学》2018,32(1)
A heterogeneous catalyst was synthesized by immobilizing Mo(CO)3 in a UiO‐66 metal–organic framework. The benzene ring of the organic linker in UiO‐66 was modified via liquid‐phase deposition of molybdenum hexacarbonyl, Mo(CO)6, as starting precursor to form the (arene)Mo(CO)3 species inside the framework. The structure of this catalyst was characterized using X‐ray diffraction, and chemical integrity was confirmed using Fourier transform infrared and diffuse reflectance UV–visible spectroscopic methods. The metal content was analysed with inductively coupled plasma. Field emission scanning electron microscopy was used to measure particle size and N2 adsorption measurements to characterize the specific surface area. This catalytic system was efficiently applied for epoxidation of alkenes and oxidation of sulfides. The Mo‐containing metal–organic framework was reused several times without any appreciable loss of its efficiency. 相似文献
9.
Nano palladium supported on high‐surface‐area metal–organic framework MIL‐101: an efficient catalyst for Sonogashira coupling of aryl and heteroaryl bromides with alkynes 下载免费PDF全文
Manne Annapurna T. Parsharamulu P. Vishnuvardhan Reddy M. Suresh Pravin R. Likhar Mannepalli Lakshmi Kantam 《应用有机金属化学》2015,29(4):234-239
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
《应用有机金属化学》2017,31(2)
A metal–organic framework Al‐MIL‐53‐NH2‐derived Brønsted acid catalyst (Al‐MIL‐53‐RSO3H) has been synthesized employing a post‐synthetic modification strategy under mild conditions. The Al‐MIL‐53‐RSO3H catalyst was successfully utilized in the nitro‐Mannich reaction taking advantage of its strong Brønsted acidity. Good to excellent yields of Mannich adducts were achieved for a variety of acylimine substrates in the presence of 0.1 mol% Al‐MIL‐53‐RSO3H. Furthermore, the Al‐MIL‐53‐RSO3H catalyst can be recycled five times without decreasing the yield and selectivity of Mannich adducts. 相似文献
11.
Highly efficient protection of alcohols and phenols catalysed by tin porphyrin supported on MIL‐101 下载免费PDF全文
Farnaz Zadehahmadi Shahram Tangestaninejad Majid Moghadam Valiollah Mirkhani Iraj Mohammadpoor‐Baltork Reihaneh Kardanpour 《应用有机金属化学》2015,29(4):209-215
The catalytic activity of 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], supported on chloromethylated MIL‐101, was investigated in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) and also their tetrahydropyranylation with 3,4‐dihydro‐2H‐pyran. Excellent yields, mild reaction conditions, short reaction times and reusability of the catalyst without significant decrease in its initial activity are noteworthy advantages of this supported catalyst. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Wenyuan Xu Yan Wang Suying Li Yongbing Cheng Zanru Guo Lin Hu Mengyin Liao Jiaxi Peng Xi Chen Shaoming Yang 《应用有机金属化学》2021,35(1)
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3. 相似文献
13.
Novel inorganic–organic yolk–shell microspheres based on Preyssler‐type NaP5W30O11014? polyoxometalate and MIL‐101(Cr) metal–organic framework (P5W30/MIL‐101(Cr)) were synthesized by reaction of K12.5Na1.5[NaP5W30O110], Cr(NO3)3·9H2O and terephthalic acid under hydrothermal conditions at 200°C for 24 h. The as‐prepared yolk–shell microspheres were fully characterized using various techniques. All analyses confirmed the incorporation of the Preyssler‐type NaP5W30O11014? polyoxometalate into the three‐dimensional porous MIL‐101(Cr) metal–organic framework. The results revealed that P5W30/MIL‐101(Cr) demonstrated rapid adsorption of cationic methylene blue (MB) and rhodamine B (RhB) with ultrahigh efficiency and capacity, as well as achieving rapid and highly selective adsorption of MB from MB/MO (MO = methyl orange), MB/RhB and MB/RhB/MO mixtures. The P5W30/MIL‐101(Cr) adsorbent not only exhibited a high adsorption capacity of 212 mg g?1, but also could quickly remove 100% of MB from a dye solution of 50 mg l?1 within 8 min. The effects of some key parameters such as adsorbent dosage, initial dye concentration and initial pH on dye adsorption were investigated in detail. The equilibrium adsorption data were better fitted by the Langmuir isotherm. The adsorption kinetics was well modelled using a pseudo‐second‐order model. Also, the inorganic–organic hybrid yolk–shell microspheres could be easily separated from the reaction system and reused up to four times without any change in structure or adsorption ability. The stability and robustness of the adsorbent were confirmed using various techniques. 相似文献
14.
Metal–organic framework MIL‐125(Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution 下载免费PDF全文
A metal–organic framework material, MIL‐125(Ti), was solvothermally prepared and characterized using X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and surface area measurements. MIL‐125(Ti) was then used as an adsorbent for Rhodamine B (RhB) removal in aqueous solution. The adsorption kinetics, adsorption mechanism, adsorption isotherm, activation energy and various thermodynamic parameters were studied in detail. The maximum adsorption capacity of MIL‐125(Ti) for RhB was 59.92 mg g?1. MIL‐125(Ti) appears to be a promising material for RhB adsorption from aqueous solutions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
Ethylene diamine functionalized MIL‐101(Cr) was established to be an efficient organocatalyst for single‐pot synthesis of polyhydroquinolines via four‐component condensation reaction between aldehydes, dimedone, β‐ketoecters and ammonium acetate in aqueous medium. Ethylene diamine of the parent open metal site MIL‐101(Cr) has been carried out through a post‐synthetic modification (PSM) technique. Efficient transformation, mild condition, easy product isolation and the potential high recycbility of the organocatalyst are the key feature of this protocol. 相似文献
16.
17.
Facile fabrication of g‐C3N4/MIL‐53(Al) composite with enhanced photocatalytic activities under visible‐light irradiation 下载免费PDF全文
A novel visible‐light‐driven g‐C3N4/MIL‐53(Al) composite photocatalyst was successfully prepared using a facile stirring method at room temperature. The g‐C3N4/MIL‐53(Al) composites were characterized and their effects on the photocatalytic activities for rhodamine B degradation were investigated. The g‐C3N4(20 wt%)/MIL‐53(Al) photocatalyst displayed optimal photocatalytic degradation efficiency, which was about five times higher than the photocatalytic activity of pure g‐C3N4. The improved photocatalytic performance of the g‐C3N4/MIL‐53(Al) photocatalyst was predominantly attributed to the efficient separation of electron–hole pairs and the low charge‐transfer resistance. g‐C3N4/MIL‐53(Al) also exhibited excellent stability and reusability. A proposed mechanism for the enhanced photocatalytic activity is also discussed based on the experimental results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
A heterometal (Pd–Pb) organic framework: synthesis,structure and heterogeneous catalytic application
A heterometallic organic framework {Pb[Pd(bpydc)Cl2]DMF}n ( 1 ) (H2bpydc = 2,2′‐bipyridine‐5,5′‐dicarboxylic acid) was synthesized via a one‐pot solvothermal method and characterized using thermogravimetric analysis, X‐ray photoelectron spectroscopy as well as powder and single‐crystal X‐ray diffraction. The crystal structure of 1 indicates that, in metalloligand Pd(bpydc)Cl2, every Pd atom adopts a square planar coordination mode with two chloride ions and two nitrogen atoms from bpydc, and the carboxyl groups of Pd(bpydc)Cl2 connect Pb atoms to form a one‐dimensional chain along the crystallographic a‐axis, which is interlinked via metalloligands to form a two‐dimensional layer structure. This complex is highly active, stable and recyclable as a catalyst for the Suzuki–Miyaura and Heck reactions of a wide range of aryl halides including electron‐rich and electron‐poor aryl iodides/bromides, affording the corresponding products in good to excellent yields. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Monolithic metal–organic framework MIL‐53(Al)‐polymethacrylate composite column for the reversed‐phase capillary liquid chromatography separation of small aromatics 下载免费PDF全文
Kareem Yusuf Ahmed Yacine Badjah‐Hadj‐Ahmed Ahmad Aqel Zeid Abdullah ALOthman 《Journal of separation science》2016,39(5):880-888
A monolithic capillary column containing a composite of metal–organic framework MIL‐53(Al) incorporated into hexyl methacrylate‐co‐ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL‐53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer–Emmett–Teller surface area from 26.92 to 85.12 m2/g. The presence of 1,4‐benzenedicarboxylate moieties within the structure of MIL‐53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π–π interactions. High‐resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96–1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed‐phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. 相似文献
20.
Enjun Gao Dongsheng Liu Jialing Xing Yunhui Feng Junqi Su Jiaxing Liu Hongwei Zhao Ning Wang Zhili Jia Xiaoyin Zhang Vladimir P. Fedin Mingchang Zhu 《应用有机金属化学》2019,33(9)
By introducing carboxyl tag to the aromatic ligands system and borrowing the organic template open framework idea, a stable fluorescent Zn metal–organic framework was successfully prepared through a rigid ligand H6L (3,5‐bis‐(3‐carboxyphenoxy)benzoic acid) under hydrothermal conditions. The selectivity and sensitivity of the Zn‐MOF to metal ions and nitro‐aromatic compounds (NACs) were investigated by fluorescence quenching. And the Zn‐MOF showed a high sensibility of nitro‐aromatic compounds (NACs) and Fe3+ ions, especially for 4‐(4‐nitropheny lazo) resorcinol (NPLR). More importantly, the detection limit of the Zn‐MOF for detecting NPLR solution was found to be 1.71 ppb. Moreover, this sensor is remarkable recyclable and is promisingly applied for rapid, on‐site and sensing of explosive residuals. 相似文献