首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用浸渍法制备了多壁碳纳米管(MWCNT)负载的Cu2O和CuI催化剂,并运用粉末X射线衍射、红外光谱、扫描电镜-能量散射谱、透射电镜和NH3程序升温脱附等技术对催化剂进行了表征。结果表明,催化剂中沉积的Cu2O和CuI分别以立方相和γ相存在于MWCNT上,且表现出由弱到强的拉电子(Lewis酸)性能。将催化剂用于催化芳醛与2-氨基吡啶氧化酰胺化反应合成N-(吡啶-2-基)苯酰胺类化合物,产物选择性为100%,收率为50%–95%。 CuI/MWCNT催化剂上产物分离收率性能好于Cu2O/MWCNT,但后者的循环使用性能更好。与共价的CuI相比,离子化的Cu2O与极性的酸活化的MWCNT间具有更适宜的相互作用,这种不同的相互作用可显著影响2-氨基吡啶的氨基对芳醛羰基的亲核进攻速率。  相似文献   

2.
The baclofen‐MWCNTs‐Pd nanocatalyst was synthesized through covalent grafting of baclofen molecules onto surface‐modified carbon nanotubes and immobilizing Pd nanoparticles by the baclofen ligands. The chemical structure of the produced nanocatalyst was studied by Raman spectroscopy, Fourier transform‐infrared spectroscopy, energy‐dispersive spectroscopy (EDS), elemental mapping and inductively coupled plasma analysis. Also, its surface morphology was determined using the scanning and transmission electron microscopy techniques. Furthermore, the obtained baclofen‐MWCNTs‐Pd nanocatalyst is demonstrated to exhibit very high activity as a heterogeneous phosphine‐free catalyst in Sonogashira cross‐coupling of aryl halides by giving good to excellent yields of different products. In addition, the nanocatalyst can be reused four times without any significant leaching or loss of activity.  相似文献   

3.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

4.
SBA‐15‐functionalized melamine–pyridine group‐supported palladium(0) was found to serve as a heterogeneous and recyclable nanocatalyst for N‐arylation of indoles with aryl iodides under a low catalyst loading (0.3 mol% of Pd) through Ullmann‐type C? N coupling reactions. A variety of aryl iodides could be aminated to provide the N‐arylated products in good to excellent yields without the need of an inert atmosphere. Also, this catalyst was found to be an efficient system for the N‐arylation of other nitrogen‐containing heterocycles with aryl iodides. The heterogeneous palladium catalyst could be recovered by simple filtration of the reaction solution and reused for six cycles without significant loss in its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
CuI‐catalyzed coupling reactions of aryl iodides and electron‐deficient aryl bromides with nitrogen‐containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of [Bmim][BF4] as the solvent, potassium phosphate as the base, and CuI as the catalyst. The CuI and [Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.  相似文献   

6.
A new nanocatalyst was synthesized by immobilization of 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine/CuI complex on ferromagnetic nanoparticles through a surface modification (FMNPs@SiO2‐TPy‐Cu). This heterogeneous catalyst was characterized using various techniques including Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and thermogravimetric analysis. The resulting nanocatalyst presented excellent catalytic activity for the regioselective syntheses of 1,4‐disubstituted 1,2,3‐triazoles and thioethers. The thermally and chemically stable, benign and economical catalyst was easily recovered using an external magnet and reused in at least five successive runs without an appreciable loss of activity.  相似文献   

7.
Pramipexole drug was attached to the surface of multi‐walled carbon nanotubes (MWCNTs) by reaction of acylated carbon nanotubes with pramipexole for the first time. The modified MWCNTs were characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies and CHNS analysis. The prepared pramipexole–MWCNTs were used for immobilization of palladium nanoparticles as a novel nanocatalyst. After characterization of the final nanocomposite, the pramipexole–MWCNTs/Pd was applied as a novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered and recycled five times without any significant loss in activity.  相似文献   

8.
An efficient catalytic system of CuI/8‐hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90°C under the condition of relatively low catalyst loading, affording various N‐arylindoles and N‐aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.  相似文献   

9.
A novel heterogeneous nanocatalyst was fabricated by depositing copper iodide and Fe3O4 nanoparticles on imidazolium‐based ionic liquid‐grafted cellulose and successfully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and flame atomic absorption spectrometry. It was employed to catalyse the reaction of terminal acetylenes with sulfonyl azides to afford highly reactive sulfonyl ketenimine intermediates which were subsequently trapped by secondary amines to give N ‐sulfonylamidines and N ‐sulfonylacrylamidines under solvent‐free conditions at room temperature. Good to excellent yields, very short reaction times, eco‐friendly processing, easy separation and reusability without significant loss of catalytic activity were found to be the notable features of this synthetic protocol.  相似文献   

10.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

11.
In this paper, the preparation of a novel magnetic nanocatalyst (Fe3O4@PVA/CuCl) is described, which involves coating of polyvinyl alcohol (PVA) onto the surface of Fe3O4 nanoparticles and its subsequent coordination with CuCl catalyst. The nanocatalyst was characterized by various analytical methods, including Fourier-transform infrared, X-ray diffraction, inductively coupled plasma spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy, vibrating-sample magnetometry, and EDX elemental mapping. Moreover, the nanocatalyst was efficiently used in the N-arylation of amines via the formation of a carbon–nitrogen bond between the aryl halides and amines by Ullmann-type coupling reactions. The catalyst was sufficiently stable and can be reused for at least seven times in a model Ullmann reaction without remarkable alteration in its catalytic behavior. Heterogeneity of the catalyst was investigated by a hot filtration test.  相似文献   

12.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   

13.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and efficient C? N cross‐coupling method of aryl halides with various heterocycles was reported, by using 10 mol% of CuI as catalyst and 1.2 equiv. NaH as base. Aryl iodides, aryl bromides and many substituted aryl chlorides could efficiently react with heterocycles, providing variety of N‐arylated products in good to excellent yields. The ligand‐free catalyst system was stable in air and could be readily reused.  相似文献   

15.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

16.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   

17.
A sulfonated magnetic cellulose‐based nanocomposite was prepared and characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. Then, it was used as a green nanocatalyst for the synthesis of α‐aminonitriles by a one‐pot three‐component condensation reaction of aldehydes or ketones, amines and trimethylsilylcyanide in ethanol at room temperature. The reaction procedure is simple, yields are very high, reaction time is very short and the catalyst can be easily separated from the reaction mixture and reused in subsequent reactions without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

19.
Enantiomerically pure benzylic amines are important for the development of new drugs. A readily accessible planar‐chiral ferrocene‐derived palladacycle is shown to be a highly efficient catalyst for the formation of N‐substituted benzylic stereocenters; this catalyst accelerates the 1,2‐addition of arylboroxines to aromatic and aliphatic imines with exceptional levels of enantioselectivity. Using aldimines an exogenous base was not necessary for the activation of the boroxines, when acetate was used as an anionic ligand. Common problems such as aryl–aryl homocouplings and imine hydrolysis were fully overcome, the latter even in the absence of molecular sieves.  相似文献   

20.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号