首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The azo dye ligand 4‐(5‐chloro‐2‐hydroxyphenylazo)‐N‐thiazol‐2‐ylbenzenesulfonamide (H2L) formed by the coupling reaction of sulfathiazole and p‐chlorophenol was synthesized and characterized using elemental analysis and Fourier transform infrared (FT‐IR) as well as UV–visible spectra. Nano‐sized divalent Cu, Co, Ni, Mn and Zn complexes of the synthesized azo dye ligand were prepared and investigated using various spectroscopic and analytical techniques. Elemental and thermal analyses indicated the formation of the Cu(II), Ni(II) and Mn(II) complexes in a molar ratio of 1:2 (L:M) while Co(II) and Zn(II) complexes exhibited a 1:1 (M:L) ratio. FT‐IR spectral studies confirmed the coordination of the ligand to the metal ions through the phenolic hydroxyl oxygen, azo nitrogen, sulfonamide oxygen and/or thiazole nitrogen. The geometric arrangements around the central metal ions were investigated applying UV–visible and electron spin resonance spectra, thermogravimetric analysis and molar conductance measurements. X‐ray diffraction patterns revealed crystalline nature of H2L and amorphous nature of all synthesized complexes. Transmission electron microscopy images confirmed nano‐sized particles and their homogeneous distribution over the complex surface. Antibacterial, antifungal and antitumour activities of the investigated complexes were screened compared with familiar standard drugs to confirm their potential therapeutic applications. The Cu(II) complex showed IC50 of 3.47 μg ml?1 (5.53 μM) against hepatocellular carcinoma cells, which means that it is a more potent anticancer drug compared with the standard cisplatin (IC50 = 3.67 μg ml?1 (12.23 μM)). Furthermore, the Co(II), Ni(II), Cu(II) and Zn(II) complexes displayed IC50 greater than that of an applied standard anticancer agent (5‐flurouracil) towards breast carcinoma cells. Hence, these complexes can be considered as promising anticancer drugs. The mode of binding of the complexes with salmon serum DNA was determined through electronic absorption titration and viscosity studies.  相似文献   

2.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

3.
A novel azo dye ligand formed by the coupling of L‐histidine with 2‐hydroxy‐1‐naphthaldyhide(H2L) and its Ru3+, Pd2+ and Ni2+ nano‐sized complexes were obtained and described by elemental analysis, TGA, magnetic moment measurements, molar conductance, UV‐Vis, ESR, X‐ray powder diffraction, IR, SEM, TEM, 1H‐nmr, 13C‐nmr, and EI‐mass spectral studies. The analytical results and spectral studies detected that the H2L ligand acts as dibasic tetradentate via aldehyde oxygen, azo nitrogen and deprotonated OH and COOH groups. The data showed the paramagnetic Ru3+ complex has octahedral geometry while Pd2+ and Ni2+ have square planar structures. The molar conductance measurements display all complexes are nonelectrolyte. The crystallinity, morphology and average particle size data revealed the prepared complexes were formed in the Nano scale. The average particle size as calculated from TEM images are found to be 13.72, 64.52 and 115.00 nm for Ru3+, Pd2+ and Ni2+ chelates, respectively. The catalytic activities of these compounds were checked for oxidation of 2‐amino phenol to 2‐amino‐3H phenoxazine‐3‐one as heterogeneous catalysts. A 96, 31 and 21% catalytic conversion are found when using Ru(III), Pd(II) and Ni(II) complexes respectively.  相似文献   

4.
Nine new azodye metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cr(III), Fe(III), Ru(III), Hf(IV) and Zr(IV) ions have been prepared via the reaction of 5,5′‐((1E,1′E)‐(methylenebis(1,4‐phenylene))bis(diazene‐2,1‐diyl))bis(6‐hydroxy‐2‐thioxo‐2,3‐dihydropyrimidin‐4(5H)‐one) (H4L) with the corresponding metal salts affording sandwich (1 L:1 M), mononuclear (2 L:1 M), binuclear (1 L,2 M) and tetranuclear (1 L,4 M) complexes. Elemental analyses, spectral methods, magnetic moment measurements and thermal studies were utilized to confirm the mode of bonding and geometrical structure for the ligand and its metal complexes. Infrared spectral data show that the H4L ligand chelates with some metal ions in keto–enol–thione or keto–thione manner. It behaves in a neutral/dibasic tetradentate fashion in sandwich and binuclear complexes. Also, it acts as a neutral bidentate moiety in the Cr(III) complex. The spectra reveal that azo group participates in chelation in all complexes. Octahedral geometry was suggested for all chelates but the Cu(II) complex with square planar geometry. The thermal stability and decomposition of the compounds were studied, the data showing that the thermal decomposition ended with metal or metal oxide mixed with carbon as final product. The electron spin resonance spectrum of the Cu(II) complex demonstrates that the free electron is located in the ( ) orbital. Measurements of biological activity against human cell lines Hep‐G2 and MCF‐7 reveal that the Cu(II) complex has a higher cytotoxicity in comparison to the free ligand and other metal complexes, with IC50 values of 6.10 and 5.2 μg ml?1, respectively, while the ligand has anti‐tumour activity relative to some of the investigated metal complexes.  相似文献   

5.
Acetato, chloro and nitrato Cu(II) complexes of a novel azo compound, namely 2,4‐dihydroxy‐5‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]benzaldehyde, have been prepared. The stoichiometry, stereochemistry and bonding fashion of these copper chelates were deduced via elemental analyses, spectral methods and conductivity and magnetic measurements. Infrared spectral data confirmed the participation of azo N atom and the deprotonated OH group. UV–visible spectral data and magnetic measurements indicated octahedral stereo‐structure for the acetato and nitrato compounds and square planer for the chloro compound. Thermogravimetric analysis was applied to investigate the thermal degradation of the metal chelates. The thermo‐kinetic parameters were computed. The molecular modeling technique was used to support the predicted geometry of the prepared chelates. The interaction between the Cu(II) complexes and calf thymus DNA was studied using two techniques: absorption and viscosity measurements. The values of binding constant obtained from the absorption spectral method were calculated and found to be 4.23 × 104, 26.93 × 104, 13.01 × 104 and 5.36 × 104 M?1 for ligand and acetato, chloro and nitrato complexes, respectively. The antimicrobial activities were evaluated against various bacterial and fungi strains. The in vitro antitumor efficacy of the synthesized compounds was investigated against the HEPG2 cell line.  相似文献   

6.
A novel tetradentate azo‐Schiff base ligand (H2L) was synthesized by 2:1 molar condensation of an azo‐aldehyde and ethylenediamine. Its mononuclear Cu(II), Ni(II), Co(II) and Zn(II) complexes were prepared and their structures were confirmed using elemental analysis, NMR, infrared and UV–visible spectroscopies and molar conductivity measurements. The results suggest that the metal ion is bonded to the tetradentate ligand through phenolic oxygens and imine nitrogens of the ligand. The solid‐state structures of the azo‐Schiff base ligand and its Cu(II) complex were determined using single‐crystal X‐ray diffraction studies. The azo‐Schiff base ligand lies on a crystallographic inversion centre and thus the asymmetric unit contains half of the molecule. X‐ray data revealed that keto–amine tautomer is favoured in the solid‐state structure of the ligand. In the structure of the Cu(II) complex, the Cu(II) ion is coordinated to two phenolate oxygen atoms and two imine nitrogen atoms of the azo‐Schiff base ligand with approximate square planar geometry. The anticancer activity of the synthesized complexes was investigated for human cancer cell line (MCF‐7) and cytotoxicity of the synthesized compounds was determined against mouse fibroblast cells (L929). The ligand and its complexes were found to show antitumor activity. The synthesized metal complexes were optimized at the B3LYP/LANL2DZ level and a new theoretical formula for MCF‐7 cells was also derived.  相似文献   

7.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

8.
The binuclear Cr (III), Mn (II) and Fe (III) complexes of N,N′‐(2,2′‐(2‐benzylmalonyl)bis (hydrazine‐1‐carbonothioyl))dibenzamide (H4BPCD), which derived from the combination of 2‐benzylmalonohydrazide suspension with benzoyl‐isothiocyanate, have been isolated and investigated by the necessary analytical and spectroscopic techniques. The IR studies show that H4BPCD dispose as a mono‐negative hexadentate ligand (NOS)2 towards Mn (II) ion and tetra‐negative hexadentate (NOS)2 towards both Cr (III) and Fe (III) ions. The values of molar conductance in DMSO suggested the non‐electrolytic nature for all complexes. The magnetic measurements and the electronic transitions data confirmed the hexa‐coordinate geometry of complexes. The DFT geometry optimization of all compounds and IR comparative study of both theoretical and experimental of H4BPCD were carried out. Moreover, the H4BPCD and its Cr (III) complex displayed intra ligand (π → π*) fluorescence emission spectra which corroborate their photoactive nature. The coordinated and crystalline water molecules have been investigated by (TG/DTG) studies. The kinetic and thermodynamic parameters were computed using Horowitz‐ Metzger, Coats‐Redfern and Broido methods. Biological studies of DNA binding, minimum inhibitory concentration, in vitro determination of SOD‐like activity and MTT‐cytotoxicity assay as well as molecular docking studies were tested for the ligand and its complexes.  相似文献   

9.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

10.
A novel diazadiphosphetidine ligand derived from the reaction of 2,4‐dichloro‐1,3‐dimethyl‐1,3,2,4‐diazadiphosphetidine‐2,4‐dioxide and 2,2′‐(ethane‐1,2‐diylbis[oxy])bis(ethan‐1‐amine) and its Ni(II), Cu(II), and Co(II) complexes have been synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility, and conductivity methods, and screened for antimicrobial, DNA binding, and cleavage properties. Spectroscopic analysis and elemental analyses indicate the formula [M(H2L)Cl2] for the Cu(II), Co(II), Ni(II), and Zn(II) complexes and octahedral geometry for all the complexes. The non‐electrolytic nature of the complexes in dimethyl sulfoxide (DMSO) was confirmed by their molar conductance values, which are in the range 12.32–6.73 Ω?1 cm2 mol?1. Computational studies have been carried out at the density functional theory (DFT)‐B3LYP/6‐31G(d) level of theory on the structural and spectroscopic properties of diazadiphosphetidine H2L and its binuclear Cu(II), Co(II), Ni(II), and Zn(II) complexes. Six tautomers and geometrical isomers of the diazadiphosphetidine ligand were confirmed using semiempirical AM1 and DFT method from DMOL3 calculations. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA by agarose gel electrophoresis in the presence and absence of an oxidant (H2O2) and a free‐radical scavenger (DMSO), indicated no activity for the ligand and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2.  相似文献   

11.
New ternary Cu(II)‐chelates with the general formula [ML L′(H2O)x] (NO3)y x (H2O), x = 0–2 and y = 0–1, (L) = 5‐acetyl‐4‐hydroxy‐2H‐1,3‐thiazine‐2,6(3H)‐dione with in the presence of a secondary ligand (L′) [N,O‐donor; 8 hydroxyquinoline or N,N‐donor; 1,10‐phenanthroline and diethethylendiamine]. Characterization of the synthesized complexes was established based on elemental analysis, molar conductance, magnetic susceptibility measurements, spectral (infrared, electronic, mass, 1H‐NMR and ESR) as well as thermal gravimetric analysis (TGA). The complexes exhibited octahedral and square planer geometry. The antimicrobial activity for the studied complexes was tested for different kind of organisms. The geometrical and non‐linear optical parameters of the studied complexes 1–3 are investigated theoretically at the B3LYP/GENECP level of theory. The optimized geometries of the studied complexes are non‐planner as indicated from the dihedral angles. The natural charge population (core, valence and Rydberg), exact electronic configuration, total Lewis, and total non‐Lewis is computed and discussed in terms of natural bond orbitals (NBO) analysis. The calculated EHOMO and ELUMO energies at the same level of theory of the studied complexes were used to calculate the global properties; hardness (η), global softness (S), electrophilicity (ω) and electronegativity (χ). The total dipole moment (μtot), total and anisotropy of polarizability (? α ?), (Δα) and first hyperpolarizability (? β ?) values were calculated and compared with urea as a reference compound. From the values of the computed first hyperpolarizability (? β ?), the ligand and the studied complexes show promising optical properties.  相似文献   

12.
The reaction of the newly synthesized ligand, 2‐isonicotinoyl‐N‐phenylhydrazine‐1‐carbothioamide (H3L), with acetate salt of Co (II), Cu (II),Ni (II) and Zn (II) led to isolation of four solid complexes. The ligand and complexes structure elucidation were based on elemental analyses, spectral analyses (IR, UV–Visible, 1H and13C‐NMR, MS and ESR), TGA, molar conductivity and magnetic moments measurements. The results indicated that the ligand exists in the thioketo form, while on coordination to the metal ions; it behaves as mono‐negative bidentate chelate and exists in enol form. The optical band gap measurements of the ligand and its metal complexes are in the range 3.83–4.48 eV indicating their semi‐conducting character. The cytotoxicity examination of H3L and its Zn (II) complex showed that the ligand have very strong cytotoxicity against both HCT‐116 and HEPG‐2 cell lines while, Zn (II) complex has moderate activity.  相似文献   

13.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

14.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

15.
KHALIL M. M. H.  MASHALY M. M.   《中国化学》2008,26(9):1669-1677
A new series of binary mononuclear complexes were prepared from the reaction of the hydrazone ligand, 2-carboxyphenylhydrazo-benzoylacetone (H2L), with the metal ions, Cd(II), Cu(II), Ni(II), Co(II), Th(IV) and UO2(VI). The binary Cu(II) complex of H2L was reacted with the ligands 1,10-phenanthroline or 2-aminopyridine to form mixed-ligand complexes. The binary complexes of Cu(II) and Ni(II) are suggested to have octahedral configurations. The Cd(II) and Co(II) complexes are suggested to have tetrahedral and/or square-planar geometries, respectively. The Th(IV) and UO2(VI) complexes are suggested to have octahedral and dodecahedral geometries, respectively. The mixed-ligand complexes have octahedral configurations. The structures of all complexes and the corresponding thermal products were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The ligand and some of the metal complexes were found to activate the enzyme pectinlyase.  相似文献   

16.
New Mn(II), Ni(II), Co(II) and Cu(II) complexes of an azo dye ligand based on p ‐phenylenediamine with 5‐nitro‐8‐hydroxyquinoline were synthesized and characterized using elemental analysis, inductive coupled plasma analysis, molar conductance, powder X‐ray diffraction, thermogravimetric analysis, magnetic moment measurements, and infrared, 1H NMR, electron ionization mass and UV–visible spectral studies. The spectral and analytical data reveal that the azo dye ligand acts as a monobasic bidentate ligand via deprotonated OH and nitrogen atom of the quinoline ring. The data support the formulation of all complexes with a 2:1 ligand‐to‐metal ratio, except the Mn(II) complex that has a mononuclear formula. All complexes have an octahedral structure. The molar conductance data reveal that all the metal complexes are non‐electrolytic in nature. From the X‐ray data, the average particle size of the ligand and its complexes is 0.32–0.64 nm. The colour fastness to light, washing, perspiration, sublimation and rubbing of the prepared ligand and its complexes on polyester fabrics and colorimetric properties were measured. The results reveal that the ligand and its complexes have a good to moderate affinity to polyester fibres.  相似文献   

17.
New metal ion complexes were isolated after coupling with 4‐(2,4‐dihydroxy‐5‐formylphen‐1‐ylazo)‐N ‐(4‐methylpyrimidin‐2‐yl)benzenesulfonamide (H2L) drug ligand. The structural and molecular formulae of drug derivative and its complexes were elucidated using spectral, analytical and theoretical tools. Vibrational spectral data proved that H2L behaves as a monobasic bidentate ligand through one nitrogen from azo group and ionized hydroxyl oxygen towards all metal ions. UV–visible and magnetic moment measurements indicated that Fe(III), Cr(III), Mn(II) and Ni(II) complexes have octahedral configuration whereas Cd(II), Zn(II) and Co(II) complexes are in tetrahedral form. The Cu(II)complex has square planar geometry as verified through electron spin resonance essential parameters. X‐ray diffraction data indicated the amorphous nature of all compounds with no regular arrangement for the solid constituents during the precipitation process. Transmission electron microscopy images showed homogeneous metal ion distribution on the surface of the complexes with nanometric particles. Coats–Redfern equations were applied for calculating thermo‐kinetic parameters for suitable thermal decomposition stages. Gaussian09 and quantitative structure–activity relationship modelling studies were used to verify the structural and biological features. Docking study using microorganism protein receptors was implemented to throw light on the biological behaviour of the proposed drug. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against fungal and bacterial strains. The resulting data indicated that the investigated compounds are highly promising bactericides and fungicides. The antitumour activities of all compounds were evaluated towards human liver carcinoma (HEPG2) cell line.  相似文献   

18.
The syntheses, structures and properties of the complexes [CdBr2( L )2·4H2O]n [ L = 2,6‐dimethyl‐3,5‐dicyano‐4‐(4‐pyridyl)‐1,4‐dihydropyridine], 1 and [Cd(SCN)2( L )2(H2O)]n, 2 , are reported. In polymeric complexes 1 — 2 , the L ligands bridge the metal centers through the pyrimidyl and cyano nitrogen atoms forming 1‐D double‐stranded chain and zigzag chain, respectively. The L ligands in complex 1 act as κ1, κ1‐bidentate bridging ligand, whereas the L ligands in complex 2 act as κ1‐monodentae and κ1, κ1‐bidentate bridging ligand. The molecules of these complexes are interlinked through various weak interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π→π* transitions.  相似文献   

19.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

20.
A novel bidentate Schiff base ligand (L) and some d‐transition metal chelates (Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) were synthesized and characterized using various physicochemical and spectroscopic techniques like elemental analysis, IR, mass, UV–visible and thermal analysis. The spectroscopic data suggested that the parent Schiff base ligand coordinated to the metal ions through both imine nitrogen atoms. The molecular and electronic structure of the free ligand was optimized theoretically, and the quantum chemical parameters were calculated. The molecular structure can be used to investigate the coordination sites and the total charge density around each atom. The free ligand and its complexes were screened for their antimicrobial activities for various pathogenic bacteria and fungi. The anticancer activities of the free ligand, Cr (III), Mn (II) and Fe (III) complexes were screened against MCF‐7 cell line and found that Mn (II) complex has the lowest IC50 (15.90 μg/ml). Molecular docking was used to predict the binding between the free ligand with receptor of mutant human androgen (ARccr) derived from androgen‐independent prostate cancer (1GS4), crystal structure of yeast‐specific serine/threonine protein phosphatase (ppz1) of Candida Albicans (5JPE) and crystal structure of renal tumor suppressor protein, folliculin (3 V42) and to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号