首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute <0.1% to the fatty acid content of food samples. Their biological role still remains unclear as authentic furan fatty acid standards are not readily available and thorough experimental studies verifying the relevance of furan fatty acids are thus virtually impossible. An efficient protocol for the isolation of the furan fatty acid 9‐(3‐methyl‐5‐pentylfuran‐2‐yl)‐nonanoic acid from hydrolyzed and centrifuged latex of Hevea brasiliensis was developed using countercurrent chromatography. A first run using pH‐zone‐refining countercurrent chromatography provided 48.4 mg of 9‐(3‐methyl‐5‐pentylfuran‐2‐yl)‐nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9‐(3‐methyl‐5‐pentylfuran‐2‐yl)‐nonanoic acid were determined by gas chromatography coupled to mass spectrometry and 1H and 13C NMR spectroscopy.  相似文献   

2.
A commercial vegetable oil‐based polyol for rigid polyurethane foams has been characterized by liquid chromatography‐electrospray ionization‐quadrupole ion trap mass spectrometry (LC‐ESI‐QIT‐MS). The absolute molecular weight (MW = 960) was measured by gel permeation chromatography (GPC) equipped with both refractive index (RI) detector and static laser light‐scattering detector (SLSD), which allowed further analysis by LC‐MS. The oligo‐polyol mixture was first separated in two elutes and then investigated by a deep multistage mass spectrometry (MSn) study and completed using NMR. The major constituents identified were regioisomers of propoxylated sucrose (nPO = 6–12), and the related esters of C16:0, C18:1, and C18:2 fatty acids had a mass ratio of 6:3:1. A comparison of fatty acids composition between the sample and palm oil demonstrated that the sample was initially prepared from the mixture of sucrose and palm oil by direct propoxylation. The MSn fragmentation studies validated the structure of propoxylated sucrose and the related fatty acids derivatives. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 255–262  相似文献   

3.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Tetracyclines abuse has frequently occurred in aquaculture against bacteria, rickettsiae, spirochetes, and mycoplasmas. In this study, a high‐throughput sample preparation method was developed using 96‐well plate solid‐phase extraction (p‐SPE) and the extract was analyzed by ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS). The experimental conditions were optimized such that the pH is 4, the eluting solvent is methanol (2 mL), and the sorbent is hydrophilic‐lipophilic balance (HLB) microsphere. The whole protocol was validated, and it showed that the tetracyclines were linear with correlation coefficients ≥ 0.9990, precision and accuracy (RSD%) in 3.9–6.1%, and mean recoveries of 88.6–103.6%. To exhibit the potential of 96‐well p‐SPE as a routine tool for inspection and quarantine, fresh aquatic samples were tested, and among which positive samples were observed. This method was demonstrated to be promising for the purification and enrichment of tetracyclines with reduced time and labor, and indeed practically and particularly suitable for widespread tetracyclines analysis.  相似文献   

5.
An efficient method for the simultaneous analysis of seven 2‐hydroxy fatty acids (2‐HFAs) as tert‐butyldimethylsilyl (TBDMS) derivative was developed by gas chromatography–mass spectrometry in selected ion monitoring mode. New mass spectral data on 2‐hydroxycapric, 2‐hydroxypalmitic, 2‐hydroxystearic and 2‐hydroxybehenic acids as di‐TBDMS derivatives for hydroxyl and carboxyl groups were built. Under the optimal conditions, the present method showed a good correlation coefficient (r ≥ 0.999) in the range of 0.01–0.5 µg. The precision showed low relative standard deviation of <10%, and the accuracy (percentage relative error) varied from ?5.2 to 0.3 for the seven 2‐HFAs studied. Recovery rates of all 2‐HFAs were ≥ 93.2% with good precision. When applied to normal human plasma, seven 2‐HFAs were positively identified. Therefore, the present efficient method will be useful for simultaneous analysis of 2‐HFAs in plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Pomegranate (Punica granatum L.) fruit and flower extracts, which are rich sources of bioactive phenolics, are widely utilized as ingredients in botanical dietary supplements. While the phenolic characterization of extracts of pomegranate fruit has been previously studied by liquid chromatography with tandem mass spectrometry, there is lack of similar data for pomegranate flowers. Herein, liquid chromatography with time‐of‐flight tandem mass spectrometry was utilized to comprehensively characterize the phenolics present in two pomegranate extracts, previously studied for their in vitro and in vivo biological effects, namely, a patented commercial pomegranate fruit extract (Pomella®), and a pomegranate flower extract. Seventy‐one phenolics were characterized in the pomegranate fruit extract with the vast majority identified in the flower extract. However, only the pomegranate fruit extract contained tannin‐glucuronides and two punicalagin isomers (a characteristic pomegranate phenolic) were identified in this extract while four were identified in the flower extract. The previously reported compounds, pomellatannin and punicatannins A/B, were identified as unique chemical markers in the pomegranate fruit and flower extracts, respectively. This study will aid in the quality control, authentication, and standardization of these botanical ingredients to evaluate their potential health benefits in future planned pre‐clinical and clinical studies. Also, this is the first phenolic characterization of a pomegranate flower extract using liquid chromatography with tandem mass spectrometry.  相似文献   

7.
Yupingfeng granules (YPFG) were isolated from a traditional Chinese medicine (TCM) formulation composed of three herbs (Astragali Radix, Atractylodis Macrocephalae Rhizoma, and Saposhnikoviae Radix). This formulation is used in TCM to tonify qi, and it can help strengthen exterior and reduce sweating. Nevertheless, the active components of YPFG remain unclear. In this study, the chemical constituents of YPFG were systematically characterized by ultra‐performance liquid chromatography coupled with electrospray ionization/ quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐Q‐TOF‐MS). Fifty‐eight compounds, namely, 20 flavonoids, 19 saponins, nine organic acids, four volatile coumarins, three lactones, one alkaloid, and two other components, were identified. In addition, the constituents of YPFG with the potential for in vivo bioactivities following oral administration were investigated in Sprague–Dawley rats. Thirteen compounds, namely, 11 flavonoid‐related and 2 saponin‐related components, were detected in rat plasma. After enriching flavonoids and saponins in YPFG by extraction, the extracts and YPFG were administrated to immunosuppressed rats, respectively. Plasma samples were analyzed by UPLC‐ESI‐Q‐TOF‐MS, and principal component analysis (PCA) confirmed that the extracts had similar effects to YPFG. This method could discover active ingredients in YPFG quickly and provide a scientific basis for quality control and mechanism research.  相似文献   

8.
A rapid, sensitive and specific ultra‐high‐performance liquid chromatography coupled with tandem mass spectrometry (UPLC‐MS/MS) method was developed to investigate the pharmacokinetics and tissue distribution of Eclipta prostrata extract. Rats were orally administrated the 70% ethanol extract of E. prostrata, and their plasma as well as various organs were collected. The concentrations of seven main compounds, ecliptasaponin IV, ecliptasaponin A, apigenin, 3′‐hydroxybiochanin A, luteolin, luteolin‐7‐O‐glucoside and wedelolactone, were quantified by UPLC‐MS/MS through multiple reactions monitoring method. The precisions (RSD) of the analytes were all <15.00%. The extraction recoveries ranged from 74.65 to 107.45% with RSD ≤ 15.36%. The matrix effects ranged from 78.00 to 118.06% with RSD ≤ 15.04%. To conclude, the present pharmacokinetic and tissue distribution studies provided useful information for the clinical usage of Eclipta prostrata L.  相似文献   

9.
Evidence‐based herbal products with assured quality are assuming importance for complementary and alternative medicine. Traditional medicines by and large are not standardized and validated to meet the new requirements. In the present study, marker (embelin)‐based standardization of a major medicinal plant, Embelia ribes and its polyherbal formulations was attempted. Conditions for the quantitative extraction of the marker compound embelin from E. ribes fruits and herbal formulations were also optimized. Reversed‐phase high‐performance liquid chromatography, coupled with diode array detection (RP‐HPLC–DAD) for the quantification of embelin was developed and validated. Satisfactory results were obtained with respect to linearity (15–250 µg/mL), LOD (3.97 µg/mL), LOQ (13.2 µg/mL), recovery (99.4–103.8%) and precision (1.43–2.87%). The applicability of the method was demonstrated with selected phytopharmaceuticals. The present method was sensitive, accurate, simple and reproducible and therefore can be recommended for marker‐based standardization, and quality assurance of E. ribes herbal formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A powerful ionic liquid‐based ultrasonic‐assisted extraction (ILUAE) method combined with ultra‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC/ESI‐QTOFMSn) was employed in the rapid simultaneous screening of iridoid glycosides, phenylethanoid glycosides, and cucurbitacin glycosides from P. scrophulariiflora. The ILUAE procedure was optimized over several ultrasonic parameters, including the ultrasonic power, concentration of the ionic liquid, and solid–liquid ratio. A comparison with conventional heat‐reflux extraction and regular UAE demonstrated that the optimized approach yielded a high extraction efficiency (Picroside I, 2.84%; Picroside II, 3.57%; 6‐O‐E‐feruloyl catalpol, 2.20%) within a short extraction time of 30 min. Negative ion mode ESI‐QTOFMS2 analysis of the fragmentation reactions of the [M–H] ions was conducted to characterize the diagnostic ions related to the glycosyl moieties, aglycone units, and the type and substituted position of the ester groups. Interestingly, the positional isomers of the iridoid glycosides could be easily discriminated based on the characteristic ions. A total of 15 glycosides, including three groups of iridoid glycoside isomers and two groups of phenylethanoid glycoside isomers, were conveniently identified within 13.5 min. Moreover, 6'‐O‐vanilloyl catalpol was identified in P. scrophulariiflora for the first time. The method developed here was further validated by measuring the recovery, correlation coefficient (R2), and reproducibility (RSD, n = 5) of three iridoid glycosides: 89.60%–109.02%, 0.9991–0.9998, and 0.93%–1.44%, respectively. This study demonstrated the capabilities of ILUAE combined with UPLC/ESI‐QTOFMSn for the rapid screening of glycosides in P. scrophulariiflora. This method offers an approach to similar studies on other natural plants. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
To evaluate the bioavailability and pharmacokinetic profiles of two novel galantamine formulations as medical countermeasure products, an ultra‐performance liquid chromatography–single quadrupole mass spectrometry (UPLC–MS) method was developed and validated for quantifying galantamine in guinea pig plasma using solid‐phase extraction with a mixed mode strong cation exchange reversed‐phase cartridge. Chromatographic separation was achieved on a Waters Acquity UPLC BEH C18 column maintained at 40°C. The mobile phases were solution A, acetonitrile–water, 5:95 (v/v) and solution B, acetonitrile–water 90:10 (v/v), both containing 2 mM ammonium formate and 0.2% formic acid. The mobile phase was delivered utilizing a 3 min gradient program start with 95%A–5%B at a flow rate of 0.6 mL/min. The analyte and internal standard, galantamine‐d3, were detected by selected ion monitoring mode on a Waters 3100 single quadrupole mass spectrometer with positive electrospray ionization. The method was validated according to the US Food and Drug Administration bioanalytical guidance. The method was selective and was linear over the analytical range of 2–2000 ng/mL. Accuracy and precision were acceptable with intra‐ and inter‐day accuracies between 96.8 and 101% and precisions (RSD) <4.88%. The method was successfully implemented to measure galantamine plasma levels in a series of pre‐clinical bioavailability studies for the evaluation of novel galantamine formulations.  相似文献   

12.
A full characterization of sulfoquinovosyldiacylglycerols (SQDGs) in the lipid extract of spinach leaves has been achieved using liquid chromatography/electrospray ionization‐linear quadrupole ion trap mass spectrometry (MS). Low‐energy collision‐induced dissociation tandem MS (MS/MS) of the deprotonated species [M ? H]? was exploited for a detailed study of sulfolipid fragmentation. Losses of neutral fatty acids from the acyl side chains (i.e. [M ? H ? RCOOH]?) were found to prevail over ketene losses ([M ? H ? R'CHCO]?) or carboxylates of long‐chain fatty acids ([RCOO]?), as expected for gas‐phase acidity of SQDG ions. A new concerted mechanism for RCOOH elimination, based on a charge‐remote fragmentation, is proposed. The preferential loss of a fatty acids molecule from the sn‐1 position (i.e. [M ? H ? R1COOH]?) of the glycerol backbone, most likely due to kinetic control of the gas‐phase fragmentation process, was exploited for the regiochemical assignment of the investigated sulfolipids. As a result, 24 SQDGs were detected and identified in the lipid extract of spinach leaves, their number and variety being unprecedented in the field of plant sulfolipids. Moreover, the prevailing presence of a palmitic acyl chain (16:0) on the glycerol sn‐2 position of spinach SQDGs suggests a prokaryotic or chloroplastic path as the main route for their biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
GL‐V9, a derivative of wogonin, shows much more potent anticancer properties than wogonin. In this study, a selective, sensitive and rapid ultra‐high‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the determination of GL‐V9 in rat plasma. Plasma samples were processed using methanol to precipitate protein. Chromatographic separation of analytes was achieved on a C18 column using gradient elution within 4.5 min. The mobile phase consisted of acetonitrile and water including 0.1% (v/v) formic acid and 5 mm ammonium acetate. GL‐V9 and caffeine (internal standard) were monitored by positive electrospray triple quadrupole mass spectrometer and quantified using multiple reaction monitoring (MRM) mode with the transitions of m/z 410.20 → 126.10 (GL‐V9) and 195.10 → 138.00 (IS: caffeine), respectively. Good linearity was obtained over the range of 2–1000 ng/mL (R2 > 0.99) and the extraction recovery was 101.91 ± 11.34%. The intra‐ and inter‐day precision variations were small (RSD 1.35–6.96%) and the relative error (RE) of accuracy was ?7.35–6.27%. The established and validated UPLC–MS/MS method was successfully applied to study the pharmacokinetic behavior of GL‐V9 after administration through different delivery routes. The results demonstrated that pulmonary delivery exhibited a greater advantage in terms of improving bioavailability compared with oral administration.  相似文献   

14.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
As part of a collaboration with the National Institutes of Health’s Office of Dietary Supplements and the Food and Drug Administration’s Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of β-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, β-carotene, and γ-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, β-carotene isomers, and δ-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements. Contribution of the US Government; not subject to copyright  相似文献   

17.
It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UPLC/Q‐TOF‐MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q‐TOF‐MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Simplified method for simultaneous identification of proteins, drying oils, waxes, and resins in the works‐of‐art samples was developed. Liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry were used to identify natural materials most frequently encountered in historical paintings. Protein binders were extracted with ammonia and purified using miniaturized solid‐phase microextraction (Omix tips) to efficiently suppress matrix interferences. Zwitterionic stationary phase was used for separation of 16 underivatized amino acids analysis with hydrophilic interaction liquid chromatography that was subsequently quantified with liquid chromatography with mass spectrometry. Gas chromatography with mass spectrometry was used to analyze drying oils, waxes, and resins after one‐step saponification/transmethylation with (m‐trifluoromethylphenyl)trimethylammonium hydroxide (Meth‐Prep II). While the drawback of this reagent is low reactivity towards hydroxyl groups, sample pretreatment was much simpler as compared to the other methods. Fatty acids derivatization with the Meth‐Prep II reagent was compared with their silylation using N,O‐bis(trimethylsilyl) trifluoroacetamide/trimethylchlorosilane mixture. It was concluded that fatty acids analysis as their methyl esters instead of trimethylsilyl esters had a minor impact on the method sensitivity. The developed method was used to analyze samples from 16th and 17th century historical paintings.  相似文献   

19.
A novel method based on direct analysis in real time integrated with mass spectrometry was established and applied into rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves. Instrument parameter settings were optimized to obtain the sensitive and accurate determination of ginkgolic acids. At the sample introduction speed of 0.2 mm/s, high intensity of [M–H] ions for ginkgolic acids were observed in the negative ion mode by utilization of high‐purity helium gas at 450°C. Two microliters of methanol extract of G. biloba kernels or leaves dropped on the surface of Quick‐Strip module was analyzed after solvent evaporated to dryness. A series of standard solutions of ginkgolic acid 13:0 in the range of 2–50 mg/L were analyzed with a correlation coefficient r  = 0.9981 and relative standard deviation (= 5) from 12.5 to 13.7%. The limit of detection was 0.5 mg/L. The results of direct analysis in real time‐mass spectrometry were in agreement with those observed by thermochemolysis gas chromatography. The proposed method demonstrated significant potential in the application of the high‐throughput screening and rapid analysis for ginkgolic acids in dietary supplements.  相似文献   

20.
Blood concentrations of tacrolimus show large variability among patients and the narrow therapeutic range is related to adverse effects. Therefore, therapeutic drug monitoring is needed for strict management. 13‐O‐Demethyl tacrolimus (13‐O‐DMT) was reported as the major metabolite formed by cytochrome P450 (CYP)3A such as CYP3A5. In previous studies, the best lower limit of quantification (LLOQ) was 0.1 ng/mL for both substances. However, this LLOQ may not be low enough now because the dosage of tacrolimus has decreased in recent years. The purpose of this study was to develop and validate a high‐sensitivity and high‐throughput assay for simultaneous quantification of tacrolimus and 13‐O‐DMT in human whole blood using ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS). Thirty‐five stable kidney transplant recipients receiving tacrolimus were recruited in this study. The calibration curve range was 0.04–40 ng/mL. All calibration samples and quality control samples fulfilled the requirements of the US Food and Drug Administration and the European Medicines Agency guidelines for assay validation. Trough concentrations of tacrolimus and 13‐O‐DMT in 35 stable kidney transplant recipients receiving tacrolimus were within the range of the respective calibration curve. Our novel UPLC–MS/MS method is more sensitive than previous methods for quantification of tacrolimus and 13‐O‐DMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号