首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Karami H  Mousavi MF 《Talanta》2004,63(3):743-749
A new dodecyl benzene sulfonate (DBS) ion-selective electrode based on polyaniline is reported. The films of polyaniline doped with DBS were prepared electrochemically on platinum electrodes in the solution containing 1.0×10−3 M aniline and 7.0×10−3 M DBS. The optimum potentiometric response was obtained for prepared polymeric film by passing electricity of 7.5 C cm−2. The electrode exhibits an excellent Nernstian slope of −59.1±0.3 mV per decade for DBS ion over a wide concentration range (5.0×10−6 to 4.1×10−3 M) with a low detection limit (1.0×10−6 M). The proposed electrode revealed good sensitivities for DBS ion over a wide variety of other anions and can be used in the wide pH range of 5-10. It shows good stability, good reproducibility, wide range of pH independency and fast response (<20 s) without using internal solution. This electrode could be used for the determination of DBS in the real samples.  相似文献   

2.
A novel method for fabricating nanostructured gold colloid electrode based on in situ functionalization of self-assembled monolayers (SAMs) of 4-aminothiophenol (4-ATP) on gold electrode is proposed. The in situ functionalization of 4-ATP SAMs yields a redox active monolayer of 4′-mercapto-N-phenylquinone diimine (NPQD). When the amino-rich surface is exposed to gold colloid, the citrate-stabilized gold nanoparticles (GNPs) can be anchored onto the surface of the in situ functionalized electrode by the electrostatic interactions and a new nanostructured gold colloid surface was obtained. The mixed monolayers of in situ functionalized product, NPQD, and 1,4-benzenedimethanethiol (BDMT) can provide a more compact and order platform to fabricate GNPs on the electrode surface. The film formed by this technique has the advantages of high organization and uniformity, which could provide a desirable microenvironment to assemble GNPs and facilitate the concentration of the analyte from the bulk solution to the electrode surface. The nanostructured gold colloid electrode has favorable effect on the electrochemical oxidation of naphthol isomers.  相似文献   

3.
This paper reports the use of an electrochemically polymerized Toluidine Blue (TB) filmelectrode.The film on platinum electrode surface was analyzed with ESCA.The heterogeneouselectron transfer processes of myoglobin at the polymerized TB film electrode have been investigatedusing in situ UV-visible spectroelectrochemistry.The formal potential(E°′)and electron transfernumber(n)of myoglobin were calculated as E°′=0.045 V(vs.NHE)and n=0.99.The exhaustivereduction and oxidation electrolyses are achieved in 130 s and 110 s respectively,during a potential stepbetween-0.4 V and+0.4 V.A formal heterogeneous electron transfer rate constant(ksh)of 1.09×10~(-4) cm/s and a transfer coefficient(α)of 0.47 were obtained by cyclic voltabsorptometry,whichindicated that myoglobin underwent a quasi-reversible electrode process at the polymerized TB filmelectrode.  相似文献   

4.
在氯化物熔体中用铁阴极沉积Nd-Fe合金的电极过程   总被引:2,自引:0,他引:2  
杨绮琴  符圣卫 《化学学报》1987,45(3):244-248
用循环伏安法、卷积伏安法和计时电位法研究了700℃-850℃下,在NaCl-KCl-NdCl3熔体中Nd(III)在铁电极上还原的阴极过程.对恒电位电解的沉积物进行X射线衍射分析.结果表明,Nd(III)在铁电极上还原时,在形成金属间化合物Fe2Nd后才析出纯金属钕,其中形成Fe2Nd这一步是可逆的.在850℃左右电解制取了含85-90wt%Nd的液态Nd-Fe合金.所得合金的物相被鉴定为Fe2Nd和Nd.  相似文献   

5.
Electrode polarization (EP) is inevitable in high conductivity buffers at low AC frequencies due to the accumulation of free charges at the electrode/electrolyte interface. Electrode miniaturization increases EP effect on impedance measurements. In this paper, six gold planar (GP) electrodes having different diameters () were used to investigate the size effect on EP with parallel plate electrode geometry. GP electrode surface was electrochemically deposited with gold nanostructures (GNs) to minimize the EP effect. Equivalent circuit model was used to attain electrode/electrolyte interfacial impedance. Constant phase element model was used to analyze the relation between the size and morphology of electrodes on EP. The surface morphology of gold nanostructured electrodes was examined using SEM, and the influence of different applied potential on the growth of GNs was elucidated with Nernst equilibrium condition. Surface roughness and wettability characteristics were examined performing surface roughness and contact angle measurements, respectively. The improvement of GNs deposited electrode performance was investigated by analytically generated Jurkat cell suspension spectra. The results show that the error in estimating the subcellular properties can be drastically reduced by using GNs deposited electrodes.  相似文献   

6.
A potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate(III) (CHCF) film-modified glassy carbon electrode is proposed. The electroactive film is introduced onto the glassy carbon electrode surface by electrodeposition of cobalt, which forms a thin CHCF film on subsequent anodic scanning in KClHCl solution (pH 5.0–5.5) containing K3Fe(CN)6. The thickness of the film on the electrode surface can be controlled by changing the electrodeposition time and the concentrations of cobalt(II) and Fe(CN)3?6 ions. The modified electrode exhibits a linear response in the concentration range 1 × 10?1 ?3 × 10?5 M potassium ion activity, with a near-Nernstian slope (48–54 mV per decade) at 25 ± 1°C. The detection limit is 1 × 10?5 M. The stability, response time and selectivity were investigated. The electrode exhibits good selectivity for potassium ion with the twelve cations investigated. The relative standard deviation is 1.5% (n=10). The effects of the thickness of the electroactive film and the pH of the solution on the electrode response were also investigated.  相似文献   

7.
Summary The lead ion selective electrode (ISE) consisting of PbS-Ag2S is normally used with a membrane surface of outer layer areaA o) and inner layer area (A i) at unity (A o=A i). Partial covering of one surface area with an insulating material and keeping the other surface layer intact resulted in different ratios of membrane surface areas exposed to lead solutions. The potential linearly increased with increasing theA o/A i ratio and decreased with decreasing theA o/A i ratio. The lead ISE potential increased linearly with increasing the membrane thickness, but which required much longer time for a stable potential.
Wirkung von Oberflächenverhältnis und Dicke der Elektrodenmembran auf das Potential einer Bleielektrode
Zusammenfassung Die aus PbS-Ag2S bestehende spezifische Bleiionen-Elektrode wird üblicherweise mit einem Oberflächenverhältnis der Außenfläche (A o) und der Innenfläche (A i) mitA o=A i verwendet. Durch teilweise Abdeckung einer Oberfläche mit isolierendem Material, ohne daß die andere Oberfläche verändert wird, ergaben sich verschiedene Verhältnisse der mit der Bleilösung in Berührung stehenden Oberflächen. Mit dem VerhältnisA o/A i stieg das Potential linear an bzw. es fiel mit diesem Verhältnis ab. Das Potential der spezifischen Bleielektrode stieg mit der Dicke der Membran, stabilisierte sich aber wesentlich langsamer.
  相似文献   

8.
The adsorption of 1,1'-dibenzyl-4,4'-bipyridinium molecules (dibenzyl-viologen or DBV(2+) for the sake of simplicity) on chloride precovered Cu(100) has been studied in an electrochemical environment by means of cyclic voltammetry and in situ scanning tunneling microscopy. DBV(2+) spontaneously forms a highly ordered phase on the chloride c(2 x 2) adlayer at potentials close to the onset of the copper dissolution reaction when the pure supporting electrolyte (10 mM HCl/5 mM KCl) is exchanged by one also containing DBV(2+). This ordered phase can be described by a ( radical 53 x radical 53)R15.9 degrees unit cell relating the organic adlayer to the chloride c(2 x 2) structure underneath or alternatively by a ( radical 106 x radical 106)R29.05 degrees unit cell relating the organic layer to the Cu(1 x 1) substrate structure. Thus, the negatively charged chloride layer acts as a template for the adsorption and phase formation of DBV(2+). Compared to the copper-chloride interaction, the DBV(2+)-chloride interaction appears to be weaker since the organic layer can be easily removed from the surface by the tunneling tip when drastic tunneling conditions (low bias voltage, high tunneling current) are applied. A key structural element of the DBV(2+) adlayer is an assembly of four individual DBV(2+) molecules forming square-shaped supramolecular units with pronounced cavities in their center. Characteristically, the supramolecular assemblies reveal a preferential rotational orientation resulting in the appearance of two chiral forms of these assemblies. Furthermore, these two chiral supramolecular assemblies occur in two mirrored domains of the ( radical 53 x radical 53)R15.9 degrees structure. It can be assumed that these viologen-based supramolecular architectures can be used as potential host cavitands for the inclusion of smaller organic molecules.  相似文献   

9.
董绍俊  许莉娟  马跃 《化学学报》1983,41(9):809-816
By surface organio synthesis a Fe (III) tetra-o-aminophenyl porphyrin modified electrode was successfully prepared on glassy carbon electrode surface through amidization. The preparation considitions were invesigated in detail. Using cyclie voltametry and cyclie semidifferential polarography in an acidic aqueous solution the behavior of the catalytic reduction of oxygen on iron porphyrin modified electrode was studied. Based on experimental results it was shown that the irreversible process of 2- electronreduction to hydrogen peroxide belongs to EC parallel catalytic process.  相似文献   

10.
The cyclic voltammetric behaviour of 8 metal ions at solid silver amalgam electrodes prepared by aging of a thin silver based mercury film electrode (SBMFE) and by deposition of silver and mercury on platinum were investigated. It was established that such electrodes behave in relation to some metals (Pb, Bi, Sn) similarly as silver electrodes i.e. the cyclic curves obtained with these electrodes at concentration 10?3M range show a prepeak-postpeak system corresponding to deposition and dissolution of the monolayer of deposit. On the other hand under the same conditions no prepeaks were observed for cadmium, zinc and thallium. In all cases investigated the heights of anodic stripping peaks were lower on curves obtained with aged SBMFE than on those obtained with fresh SBMFE having a mercury layer 1 μm thick.  相似文献   

11.
The potential response of a symmetrical configuration in which the LaF3-membrance is placed between two solutions is discussed. The electrode body provides contact with the inner surface of the fluoride membrane, with a solution containing Fe(CN) 6 3– -Fe(CN) 6 4– redox couple and a Pt wire as internal reference electrode. The electrode was examined in terms of potentialconcentration curves and potential-time response and shown to behave similarly to the commencal Orion fluoride electrode. The advantage of the proposed redox reference system is that the electrode has minimal drift immediately after assembly.  相似文献   

12.
The adhesion of liposomes on a mercury electrode leads to capacitive signals due to the formation of islands of lecithin monolayers. Integration of the current-time transients gives charge-time transients that can be fitted by the empirical equation Q(t) = Q(0) + Q(1)(1 - exp(-t/tau(1))) + Q(2)(1 - exp(-t/tau(2))), where the first term on the right side is caused by the docking of the liposome on the mercury surface, the second term is caused by the opening of the liposome, and the third term is caused by the spreading of the lecithin island on the mercury surface. The temperature dependence of the two time constants tau(1) and tau(2) and the temperature dependence of the overall adhesion rate allow determination of the activation energies of the opening, the spreading, and the overall adhesion process both for gel-phase 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and for liquid-crystalline-phase DMPC liposomes. In all cases, the spreading is the rate-determining process. Negative apparent activation energies for the spreading and overall adhesion process of liquid-crystalline-phase DMPC liposomes can be explained by taking into account the weak adsorption equilibria of the intact liposomes and the opened but not yet spread liposomes. A formal kinetic analysis of the reaction scheme supports the empirical equation used for fitting the charge-time transients. The developed kinetic model of liposome adhesion on mercury is similar to kinetic models published earlier to describe the fusion of liposomes. The new approach can be used to probe the stability of liposome membranes.  相似文献   

13.
The process of phenol oxidation on a boron-doped diamond electrode (BDD) is studied in acidic electrolytes under different conditions of generation of active oxygen forms (AOFs). The scheme of phenol oxidation known from the literature for other electrode materials is confirmed. Phenol is oxidized through a number of intermediates (benzoquinone, carboxylic acids) to carbon dioxide and water. Comparative analysis of phenol oxidation rate constants is performed as dependent on the electrolysis conditions: direct anodic oxidation, with oxygen bubbling, and addition of H2O2. A scheme is confirmed according to which active radicals (OH·, HO2·, HO2) are formed on a BDD anode that can oxidize the substrate which leads to formation of organic radicals interacting with each other and forming condensation products. Processes with participation of free radicals (chain-radical mechanism) play an important role in electrochemical oxidation on BDD. Intermediates and polymeric substances (polyphenols, quinone structures, and resins) are formed. An excess of the oxidant (H2O2) promotes a more effective oxidation of organic radicals and accordingly inhibition of the condensation process.  相似文献   

14.
By surface organic synthesis a Fe (III) tetra-o-aminophenyl porphyrin modified electrode was successfully prepared on glassy carbon electrode surface through amidization. The preparative conditions were investigated in detail. Using cyclic voltammetry and semidifferential neo-polarography in an acidic aqueous solution the behavior of the catalytic reduction of oxygen on iron porphyrin modified electrode was studied. Based on experimental results it was shown that the irreversible process of 2-electron-reduction to hydrogen peroxide belongs to EC parallel catalytic process.  相似文献   

15.
A new sulfate-selective electrode based on the complex N,N'-bis(2-amino-1-oxo-phenelenyl)phenylenediamine copper(II) (CuL) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -29.5 +/- 0.5 mV/decade and a linear range of 1.0 x 10(-7) - 1.0 x 10(-1) M for sulfate. The limit of detection was 1.0 x 10(-8) M. It has a fast response time of 10 s and can be used for more than three months. The selective coefficients were determined by the fixed interference method (FIM). The electrode could be used in the pH range 3.5 - 8.0. It was employed as an indicator electrode for direct determination of sulfate in pharmacy and cement samples.  相似文献   

16.
Based on the self-assembled monolayer (SAM) technique, a number of methods for immobilizing protein onto electrodes have been recently reported, such as entrapment method in which the protein was wrapped with regenerated silk fibroin[1], self-assem- bled monolayer[2] and silica sol-gel[3], layer-by-layer self-assembly method in which the protein was ad-sorbed to opposite charged macromolecules due to electrostatic attraction[4], reversed micelle[5], cross- linked method[6] and surface spin-coa…  相似文献   

17.
Compact, rigid, five-legged fullerene derivatives C60R5Me and M(C60R5)Cp (M = Fe and Ru; R = C6H4COOH, C6H4C6H4COOH, and CH2COOH) were synthesized and arrayed on an indium-tin oxide (ITO) surface. These devices exhibit a respectable quantum yield with photocurrent generation up to 18%, and, more importantly, the direction of the photocurrent can be changed not only by the molecular structure itself but also by changing the geometric configuration of the photoactive acceptor (fullerene) and donor (metal atom) on the ITO surface.  相似文献   

18.
This work describes the development of a fast, precise and reliable voltammetric method for the quantification of indapamide, an orally active diuretic sulfonamide used for hypertensive treatment. This compound acts inhibiting sodium reabsorption and increasing the elimination of water. This characteristic was responsible for its banishment by the International Olympic Committee since 1999. The study begins by finding an adequate potential range (−0.20 to 0.30 V) to avoid poisoning the working glassy carbon electrode (GCE) in phosphate buffer 0.10 mol L−1 (pH=12.0). Utilizing flow injection analysis, linear responses between 2.0 × 10−6 mol L−1 to 2.5 × 10−5 mol L−1 of indapamide (R2=0.995), and detection limit (LOD) 3.0 × 10−7 mol L−1 were obtained. This method was applied for the quantification of indapamide in tablets and in synthetic urine. The same flow system was used for the analysis of commercial drugs and the response obtained corresponded to 98 % of the concentration indicated on the drug label. These tablets were also analyzed by high performance liquid chromatography (HPLC), obtaining a recovery of 103 % and LOD 4.0 × 10−7 mol L−1. The velocity of analysis using flow methods compares advantageously to the classical chromatographic methods. For synthetic urine, linear responses were obtained in samples spiked in the region from 5.0 × 10−6 mol L−1 to 30 × 10−6 mol L−1 (R2=0.991) and LOD 3.0 × 10−7 mol L−1.  相似文献   

19.
Marine and freshwater biofilm usually shift the open circuit potential (OCP) of stainless steel towards the electropositive direction by + 450 mV vs SCE. The nature of oxide film and bacterial metabolism were also correlated with ennoblement process by various investigators. Glassy carbon electrode (GCE) was used in the present study and a shifting of potential in the positive side (+ 450 mV) was noticed. It indicates that biofilm contributes to the ennoblement process without any n/p-type semiconducting oxide film. The nature of the cathodic curve for the biofilm covered GCE is compared with the previous literature on the electrochemical behavior of stainless steel. The present study explains the oxidation and reduction peaks of biofilm covered GCE by cyclic voltammetry. Electrochemical impedance result reveals the diffusion process within the manganese biofilm. The present study confirms the previous investigations that the manganese biofilm rules the electrochemical behavior of materials and suggests that oxide film is not necessary to assist the ennoblement process.  相似文献   

20.
Kyoungseon Min 《Talanta》2009,80(2):1007-191
A novel 3-dimensional single wall carbon nanotubes (SWNTs)-polypyrrole (Ppy) composite was prepared as an electrode by chemically polymerizing polypyrrole onto SWNTs using a LiClO4 oxidant. This composite electrode was characterized by scanning electron microscopy (SEM) and cyclic voltammetry with 1 mM [Fe(CN)6]−3/[Fe(CN)6]−4. The SWNTs were thickly coated with chemically polymerized polypyrrole and the composite had many surface pores and crevices which could enhance mass transfer. The SWNTs-Ppy composite electrode showed a large specific surface area (30 m2/g) and a good reproducible current response, at about 100 times the peak current of a glassy carbon electrode (GCE). The diffusion coefficient was calculated to be 4.81 × 10−6 cm2/s. As a biosensor application, tyrosinase was immobilized on the functionalized SWNTs and tyrosinase-SWNTs-Ppy composite was prepared in the same manner. This tyrosinase-SWNT-Ppy composite electrode was used for amperometric detection of dopamine in the presence of ascorbic acid and showed high sensitivity (467 mA/M cm2) and lower detection limit (5 μM) compared to previous reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号