首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

2.
The polycatenar bent-shaped molecules are able to form columnar phases with column stratum built of few molecules, arranged in coplanar or conelike geometry. In the latter case, the phase becomes axially polar, with electric spontaneous polarization reorientable in the electric field by flipping the cone axis. The phase is antiferroelectric; in the plane perpendicular to columns, the ferroelectric hexagonal order exists, but the columns are broken along the z direction and the polarization direction alternates between the blocks.  相似文献   

3.
Novel columnar liquid crystalline compounds N,N'-bis(3,4,5-trialkoxylphenyl)ureas 1a-c (R = n-C(8)H(17), n-C(12)H(25), and n-C(16)H(33)) were synthesized, and their phase transitions were measured by differential scanning calorimetery. The superstructures were investigated by X-ray diffraction, polarized light optical microscopy, and IR spectroscopy. The compounds exhibited both rectangular and hexagonal columnar phases in which the urea molecules in each column were stacked in one direction with strong hydrogen bonds. To confirm the ferroelectric switching, optoelectronic experiments were carried out, and the hexagonal columnar phases of 1b and 1c gave a sharp peak of spontaneous polarization in response to an applied triangular wave electric field (0.1-18 Hz). This is the first example of ferroelectrically switchable columnar liquid crystal phases generated by achiral molecules.  相似文献   

4.
The effects of film thickness on the columnar packing structure of discotic supramolecules in a thin supported film have been investigated by grazing‐incidence small‐angle X‐ray scattering technique using magnetically aligned cobalt octa(n‐decylthio)porphyrazine (CoS10) films on octadecyltrichlorosilane (OTS)‐functionalized substrates as model systems. Magnetically aligned CoS10 films with a range of film thicknesses (49–845 nm) form uniaxially oriented ‘edge‐on’ columnar superstructures with their columnar directors perpendicular to the applied magnetic field. However, the orientational ordering of the columnar packing in the plane perpendicular to the applied magnetic field is strongly dependent on the film thickness. While being damped by the elasticity of the side chains of CoS10, the strong interfacial interaction at the film‐substrate interface propagates up to 50–100 nm from the substrate, maintaining the orientation of columnar packing in the plane perpendicular to the applied magnetic field. When the distance from the film‐substrate interface becomes larger than about 100 nm, symmetric tilting of columnar layer orientation, which saturates at 11.5°, occurs due to longitudinal edge dislocations induced by accumulated elastic deformation.  相似文献   

5.
The 1,2,3‐triazole molecule, which is a product of click chemistry, possesses a high dipole moment and can be a useful polar motif for ferroelectric columnar liquid crystal (LC) materials—though it has not been used to date. Herein, we report the helical assembly and ferroelectric switching properties of a columnar liquid crystal comprising a naphthalene core and 1,2,3‐triazolyl linkages. The molecule assembles into a double‐stranded helical columnar LC structure (Colhel). The X‐ray simulations of cisoid and transoid columnar models suggest that the helical assembly comprises cisoid conformers with a non‐zero dipole moment. The helical columns in the Colhel phase are aligned homeotropically under an electric field. The ferroelectric switching of the axial polarization can be observed in the temperature range of 105–115 °C in the Colhel phase, wherein the triazolyl hydrogen bonding along the column axis is weakened. The ferroelectric switching event is attributed to the rotation of the polar triazolyl units in response to the electric field.  相似文献   

6.
Hexasubstituted C3‐symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape‐persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short‐range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star‐shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future.  相似文献   

7.
A diketopyrrolopyrrole (DPP) dye self‐assembles via a unique hydrogen‐bonding motif into an unprecedented columnar liquid‐crystalline (LC) structure. X‐ray and polarized FTIR experiments reveal that the DPPs organize into a one‐dimensional assembly with the chromophores oriented parallel to the columnar axis. This columnar structure is composed of two π–π‐stacked DPP dimers with mirror‐image configurations that stack alternately through quadruple hydrogen bonding by 90° rotation. This exotic packing is dictated by the complementarity between H‐bonds and the steric demands of the wedge‐shaped groups attached at the core. This novel LC supramolecular material opens a new avenue of research on DPP dye assemblies with photofunctional properties tailored by H‐bonding networks.  相似文献   

8.
A tunable supramolecular thiophene host system with a chiral channel-like cavity is developed using (1R,2S)-2-amino-1,2-diphenylethanol. This thiophene host system possesses a chiral helical columnar structure. The chiral cavities are formed by the self-assembly of the helical column, and guest molecules are included by varying the helical structure and packing arrangement of this column.  相似文献   

9.
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics.  相似文献   

10.
Despite extensive use of arginine‐rich cell‐penetrating peptides (CPPs)—including octaarginine (R8)—as intracellular delivery vectors, mechanisms for their internalization are still under debate. Lipid packing in live cell membranes was characterized using a polarity‐sensitive dye (di‐4‐ANEPPDHQ), and evaluated in terms of generalized polarization. Treatment with membrane curvature‐inducing peptides led to significant loosening of the lipid packing, resulting in an enhanced R8 penetration. Pyrenebutyrate (PyB) is known to facilitate R8 membrane translocation by working as a hydrophobic counteranion. Interestingly, PyB also actively induced membrane curvature and perturbed lipid packing. R8 is known to directly cross cell membranes at elevated concentrations. The sites of R8 influx were found to have looser lipid packing than surrounding areas. Lipid packing loosening is proposed as a key factor that governs the membrane translocation of CPPs.  相似文献   

11.
We report on measurements of deuteron quadrupolar splitting and spin-lattice relaxation times T1Q and T1Z in the columnar phase of a ring-deuteriated hexaoctyloxyrufigallol at 46 MHz as a function of temperature. To describe small-step rotations of these molecules within each column in the columnar phase, a space-fixed frame is used to diagonalize the molecular diffusion tensor. The principal diffusion constants in this so called 'anisotropic viscosity' model Dalpha and Dbeta are for rotations of a molecule around and perpendicular to the columnar axis, respectively. A global target analysis of the spectral densities at seven temperatures in a minimization procedure was carried out. We found that Dalpha > Dbeta, which is consistent with the picture that the motion towards or away from the local director tends to disrupt the packing of molecules within the column.  相似文献   

12.
GONG  Wenjun  ZHANG  Junxia  ZHANG  Yuping  ZHANG  Yijun  TIAN  Mengkui  WU  Dafu 《中国化学》2009,27(4):763-767
The conventional analytical HPLC was successfully developed for micro‐column separation by using a simple eluate splitting system, self‐preparation of packing column and on‐capillary column detector in our laboratory. Porous inlet frit in fused silica capillary was rapidly prepared by sintering stainless steel powders under 500 meshes for about 20 s. The use of such frits or metal meshes in capillary to retain C18 particles of chromatographic packing was demonstrated to be stable and specially robust with continuous packing and long chromatographic runs. Furthermore, the chromatographic behavior was detailedly evaluated by changing the flow rate and the percentage of mobile phase using the prepared capillary column. Under the optimal experimental conditions, baseline separation of the model analytes including thiourea, benzene, toluene, ethylbenzene was obtained with a high column efficiency near 70000N (plates/m) by the developed capillary‐HPLC.  相似文献   

13.
The synthesis, structural, and retrostructural analysis of two libraries containing 16 first and second generation C(3)-symmetric self-assembling dendrimers based on dendrons connected at their apex via trisesters and trisamides of 1,3,5-benzenetricarboxylic acid is reported. A combination of X-ray diffraction and CD/UV analysis methods demonstrated that their C(3)-symmetry modulates different degrees of packing on the periphery of supramolecular structures that are responsible for the formation of chiral helical supramolecular columns and spheres self-organizable in a diversity of three-dimensional (3D) columnar, tetragonal, and cubic lattices. Two of these periodic arrays, a 3D columnar hexagonal superlattice and a 3D columnar simple orthorhombic chiral lattice with P222(1) symmetry, are unprecedented for supramolecular dendrimers. A thermal-reversible inversion of chirality was discovered in helical supramolecular columns. This inversion is induced, on heating, by the change in symmetry from a 3D columnar simple orthorhombic chiral lattice to a 3D columnar hexagonal array and, on cooling, by the change in symmetry from a 2D hexagonal to a 2D centered rectangular lattice, both exhibiting intracolumnar order. A first-order transition from coupled columns with long helical pitch, to weakly or uncorrelated columns with short helical pitch that generates a molecular rotator, was also discovered. The torsion angles of the molecular rotator are proportional to the change in temperature, and this effect is amplified in the case of the C(3)-symmetric trisamide supramolecular dendrimers forming H-bonds along their column. The structural changes reported here can be used to design complex functions based on helical supramolecular dendrimers with different degree of packing on their periphery.  相似文献   

14.
A hydrogen‐bonded helical columnar liquid crystal was synthesized, in which the helical structure is induced by a centered triphenylene derivative bearing chiral side‐chains. The triphenylene derivative, 2,6,10‐tris(carboxymethoxy)‐3,7,11‐tris((S)‐(‐)‐2‐methyl‐1‐butanoxy)triphenylene ( TPC4(S) ), and a dendric amphiphile, 3,5‐bis‐(3,4‐bis‐dodecyloxy‐benzyloxy)‐N‐pyridine‐4‐yl‐benzamide ( DenC12 ), were mixed in a 1:3 ratio to obtain a complex, TPC4(S)‐DenC12 . Analyses by 1H‐NMR spectroscopy, diffusion ordered spectroscopy (DOSY), CD spectroscopy, infrared (IR) spectroscopy, polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray diffractometry revealed that TPC4(S)‐DenC12 self‐assembles to form helical columnar stacks in solution and a helical columnar liquid crystal in bulk. The hydrogen bonding between TPC4(S) and DenC12 is essential for the helical columnar organization, and the preference for a one‐handed helical conformation is likely derived from the steric interaction between the chiral side‐chains and the dendric amphiphiles in the packing of the hydrogen‐bonded columnar assemblies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A tunable supramolecular phenylacetylene host system with a chiral channel-like cavity is developed by using (1R,2S)-2-amino-1,2-diphenylethanol. This host system possesses a chiral 21-helical columnar structure; chiral cavities are constructed by the self-assembly of the 21-helical column, and guest molecules are included by varying the packing of this column.  相似文献   

16.
Supramolecular columnar assemblies are known to form intrinsic macrodipoles, which play an important role in intercolumnar interactions and govern the self‐assembly on the mesoscale. A prominent class that provides this feature are trisamide derivatives, namely, 1,3,5‐benzenetrisamides and 1,3,5‐cyclohexanetrisamides. The understanding of how subtle changes in the chemical structure influence the columnar order and consequently the macrodipole formation is of fundamental interest. Here we report on the theoretical investigation of trisamide derivatives and how the formed macrodipole is related to the properties of the columnar aggregates. Calculations were carried out on a semiempirical level using the PM6 approximation, which is able to treat weak interactions like hydrogen bonding and dispersion forces with a sufficient accuracy. We have compared the influence of a benzene core with a cyclohexane core on the macrodipole formation. It was revealed that columnar aggregates based on 1,3,5‐cyclohexanetrisamides have much higher dipole moments than those formed with aromatic cores. A cooperative effect was found during aggregation, as longer aggregates show stronger hydrogen bonding, thereby facilitating the addition of the next molecule. We have also investigated the influence of the amide connection on the strength of the formed macrodipole. The trends observed for the macrodipole strength correlate with the calculated heat of formation. If the amide groups are inverted, the strength of the macrodipole is reduced and the negative heat of formation is increased. HOMO–LUMO gaps were correlated with the inverse of the dipole moment per monomer unit, thus indicating that the macrodipole might act as a perturbation to the supramolecular assemblies.  相似文献   

17.
Through molecular design and straightforward synthesis, incorporating an additional alkoxy chain onto various numbers of peripheral phenyls in nematogenic hexakis(4-alkoxyphenylethynyl)benzene was achieved to generate columnar phases with significantly expanded temperature ranges. For the compound with two decyloxy chains on every peripheral phenyl, scanning tunnelling microscopic studies indicate the molecule adopts a preferred molecular-swirl geometry by restricting the conformational arrangement of the alkoxy side chains. Cooperative packing of the molecular swirls by a lock-in mechanism among columns results in a stable helical column packing evidenced by powder X-ray diffraction.  相似文献   

18.
The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18‐pentaaryl‐1‐hydro[60]fullerenes and the solid‐state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non‐stacked structures with, for example, dimeric, layered, diamondoid, or feather‐in‐cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para‐substituents on the aryl groups. The series of pentaarylfullerenes was characterized by single‐crystal X‐ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.  相似文献   

19.
Novel lipid raft stationary phase chromatography (LRSC), with lipid rafts that contain abundant tropomyosin‐related tyrosine kinase A receptors immobilized on the stationary phase, was developed for a high‐throughput screening of potentially active antitumor agents. Lestaurtinib was used as a model compound to determine the operational parameters of the LRSC. Of all the factors considered, the particle size of column packing, the column temperature and the flow rate were of immense importance in determining the performance of the established LRSC system. In order to profoundly comprehend the binding interaction between the model drug and the receptors on the column, thermodynamic studies were employed. The results revealed that the interaction was spontaneous and exothermic, a typical enthalpy‐driven process. Additionally, the primary forces were hydrogen bonding and van der Waals forces. In evaluating the applicability of the method, active extracts from Albizziae Cortex were screened out using the LRSC system under the optimized conditions. The bioactive components were successfully confirmed by the MTT assay. In conclusion, it could be said that the LRSC is a good model for screening potential antitumor agents because of its viability, rapid response and scalable features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The present report undertakes a challenge of general interest in supramolecular chemistry: the achievement of helical organizations with controlled structure. To achieve this target we considered the possibility of inducing supramolecular chirality using molecules that were designed to organize into columnar mesophases. The use of oxazoline-derived ligands and metal coordination served as tools to prepare molecules with a phasmidic-like structure, which show columnar organization in the liquid crystalline state. To ensure the formation of chiral mesophases, these complexes bear stereogenic centers in the rigid coordination environment of the metal. X-ray and circular dichroism experiments have revealed that chirality transfer does indeed take place from the chiral molecule to the columnar liquid crystal organization. This chiral columnar organization appears as a helix consisting of stacks of molecules that rotate with respect to one another along the column while maintaining their mean planes parallel to each other. In fact, it has been concluded that packing of these polycatenar molecules must be more efficient upon rotation of a molecule with respect to the adjacent one along the column. Furthermore, the same type of helical supraorganization has been found to be present in the mesophase of the racemic mixture and the mixture of diastereomers prepared from the racemic ligand. In this case, segregation of the optical isomers is proposed to occur to give rise to both types of helix (right-handed and left-handed).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号