首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

2.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

3.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

4.
Farrerol is a 2,3‐dihydro‐flavonoid isolated from rhododendron. In this study, a sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed for the determination of farrerol in rat plasma. Liquid–liquid extraction by ethyl ether was used for sample preparation. Chromatographic separation was achieved on an Agilent UHPLC XDB‐C18 column (2.1 × 100 mm, 1.8 μm) with water and methanol (30:70, v /v) as the mobile phase. An electrospray source was applied and operated in negative ion mode; selection reaction monitoring was used for quantification using target fragment ions m/z 299 → 179 for farrerol and m/z 267 → 252 for internal standard. Calibration plots were linear in the range of 2.88–1440 ng/mL for farrerol in rat plasma. Intra‐ and inter‐day precisions were <11.6%, and the accuracy ranged from −13.9 to 11.9%. The UHPLC–MS/MS method was successfully applied in pharmacokinetics and bioavailability studies of farrerol in rats.  相似文献   

5.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

6.
Betahistine is widely used for the treatment of vertigo. Owing to first‐pass metabolism, 2‐pyridyl acetic acid (2PAA, major metabolite of betahistine) was considered as surrogate for quantitation. A specific and sensitive LC–MS/MS method was developed and validated for quantitation of 2PAA using turbo‐ion spray in a positive ion mode. A solid‐phase extraction was employed for the extraction of 2PAA and 2PAA d6 (IS) from human plasma. Chromatographic separation of analytes was achieved using an ACE CN, 5 μm (50 × 4.6 mm) column with a gradient mobile phase comprising acetonitrile–methanol (90:10% v /v) and 0.7% v/v formic acid in 0.5 mm ammonium trifluoroacetate in purified water (100% v/v). The retention times of 1.15 and 1.17 min for 2PAA and internal standard, respectively, were achieved. Quantitation of 2PAA and internal standard was achieved by monitoring multiple reaction monitoring transition pairs (m /z 138.1 to m /z 92.0 and m /z 142.1 to m /z 96.1, respectively). The developed method was validated for various parameters. The calibration curves of 2PAA showed linearity from 5.0 to 1500 ng/mL, with a lower limit of quantitation of 5.0 ng/mL. The bias and precision for inter‐ and intra‐batch assays were <10%. The developed method was used to support clinical sample analysis.  相似文献   

7.
The aim of this study was to improve and validate a more stable and less time‐consuming method based on liquid chromatography and tandem mass spectrometry (LC‐ MS/MS) for the quantitative measurement of imatinib and its metabolite N‐ demethyl‐imatinib (NDI) in human plasma. Separation of analytes was performed on a Waters XTerra RP18 column (50 × 2.1 mm i.d., 3.5 μm) with a mobile phase consisting of methanol–acetonitrile–water (65:20:15, v /v/v) with 0.05% formic acid at a flow‐rate of 0.2 mL/min. The Quattro MicroTM triple quadruple mass spectrometer was operated in the multiple‐reaction‐monitoring mode via positive electrospray ionization interface using the transitions m /z 494.0 → 394.0 for imatinib, m /z 479.6 → 394.0 for NDI and m /z 488.2 → 394.0 for IS. The method was linear over 0.01–10 μg/mL for imatinib and NDI. The intra‐ and inter‐day precisions were all <15% in terms of relative standard deviation, and the accuracy was within ±15% in terms of relative error for both imatinib and NDI. The lower limit of quantification was identifiable and reproducible at 10 ng/mL. The method was sensitive, specific and less time‐consuming and it was successfully applied in gastrointestinal stromal tumor patients treated with imatinib.  相似文献   

8.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

9.
Rabeprazole is a novel benzimidazole proton pump inhibitor used for the treatment of gastrointestinal disorders. It is a chiral molecule that gives rise to the possibility of stereoselective pharmacokinetics. To investigate this phenomenon, a rapid and sensitive chiral assay based on supercritical fluid chromatography tandem mass spectrometry was developed and applied to the determination of (R )‐rabeprazole and (S )‐rabeprazole in dog plasma. Sample preparation involved protein precipitation with acetonitrile after the addition of (R )‐lansoprazole as internal standard. Baseline separation of enantiomers in 4.5 min was achieved on an Acquity UPC2 system using an ACQUITY UPC2 Trefoil CEL2 column maintained at 60°C and a mobile phase consisting of methanol/CO2 (30:70, v/v) delivered at 2.5 mL/min. Detection was achieved by multiple reaction monitoring of the transitions at m/z 360.0→242.2 (rabeprazole) and 370.3→252.0 (internal standard) in the positive ion mode. The assay was linear in the range of 1–1000 ng/mL and free of matrix effects. Intra‐ and interday precisions were less than 10.0% with accuracy in the range of –2.6 to 3.1%. The method was successfully applied to a pharmacokinetic study of rabeprazole enantiomers after administration of a single oral dose of 10 mg racemate to beagle dogs.  相似文献   

10.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive LC–MS/MS method for the determination of bruceine D in rat plasma was developed. The analyte and IS were separated on a Luna C18 column (2.1 × 50 mm, 1.7 μm) using a mobile phase of acetonitrile and 0.1% formic acid in water (40:60, v/v) at a flow rate of 0.25 mL/min. The selected reaction monitoring mode was chosen to monitor the precursor‐to‐product ion transitions of m/z 409.2 → 373.2 for bruceine D and m/z 469.2 → 229.3 for IS using a negative ESI mode. The method was validated over a concentration range of 0.5–2000 ng/mL for bruceine D. Total chromatography time for each run was 3.5 min. The method was successfully applied to a pharmacokinetic study of bruceine D in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Canagliflozin is a novel, orally selective inhibitor of sodium‐dependent glucose co‐transporter‐2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid–liquid extraction by tert‐butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile–0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple‐quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4]+ → 191.0 for canagliflozin and m/z = 451.2 [M + H]+ → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive and reliable LC–MS/MS method was developed and validated for the quantification of anemoside B4, a potential antiviral constituent isolated from Pulsatilla chinensis in rat plasma, tissue, bile, urine and feces. All biological samples were prepared by protein precipitation method, and ginsenoside‐Rg1 was chosen as the internal standard (IS). The analyte and IS were separated using a C18 column (2.1 × 50 mm, 1.8 μm) and a mobile phase consisting of 0.1% formic acid in water (v /v) and acetonitrile running at a flow rate of 0.2 mL/min for 5 min. The multiple reaction monitoring transitions were monitored at m /z 1219.5–749.5 for anemoside B4 and 845.4–637.4 for ginsenoside‐Rg1 in electrospray ionization negative mode. The calibration curve was linear in the range of 10–2000 ng/mL for all biological matrices with a lower limit of quantification of 10 ng/mL. The validated method was successfully applied to a pharmacokinetics, tissue distribution and excretion study. These preclinical data will be beneficial for further development of anemoside B4 in future studies.  相似文献   

14.
A novel, precise, sensitive and accurate ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the simultaneous determination of a novel drug combination, candesartan (CAN) and chlorthalidone (CHL), in human plasma. Chromatographic separation was achieved on Waters Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm). Mobile phase consisting of 1 mm ammonium acetate in water–acetonitrile (20:80 v /v) was used. The total chromatographic runtime was 1.9 min with retention times for CAN and CHL at 0.7 and 1.1 min respectively. Ionization and detection of analytes and internal standards was performed on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and negative ionization mode. Quantitation was done to monitor protonated precursor → product ion transition of m /z 439.2 → 309.0 for CAN, 337.0 → 189.8 for CHL and 443.2 → 312.1 for candesartan D4 and 341.0 → 189.8 for chlorthalidone D4. The method was validated over a wide dynamic concentration range of 2.0–540.0 ng/mL for candesartan and 1.0–180.0 ng/mL for chlorthalidone. The validated method was successfully applied for the assay of CAN and CHL in healthy volunteers.  相似文献   

15.
A rapid and sensitive analytical method based on liquid chromatography coupled to tandem mass spectrometry detection with positive ion electrospray ionization was developed for the determination of febuxostat in human plasma using d7‐febuxostat as the internal standard (IS). A simple protein precipitation was performed using acetonitrile. The analyte and IS were subjected to chromatographic analysis on a Capcell PAK C18 column (4.6 × 100 mm, 5 µm) using acetonitrile–5 mm ammonium acetate–formic acid (85:15:0.015, v/v/v) as the mobile phase at a flow rate of 0.6 mL/min. An Agilent 6460 electrospray tandem mass spectrometer was operated in the multiple reaction monitoring mode. The precursor‐to‐product ion transitions m/z 317 → m/z 261 (febuxsotat) and m/z 324 → m/z (261 + 262) (d7‐febuxostat, IS) were used for quantitation. The results were linear over the studied range (10.0–5000 ng/mL), and the total analysis time for each chromatograph was 3 min. The intra‐ and inter‐day precisions were less than 7.9 and 7.2%, respectively, and the accuracy was within ±4.2%. No evidence of analyte instability in human plasma was observed storage at ?20°C for 31 days. This method was successfully applied in the determination of febuxostat concentrations in plasma samples from healthy Chinese volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively.  相似文献   

17.
A single LC–MS/MS assay has been developed and validated for the simultaneous determination of metformin and dapagliflozin in human plasma using ion‐pair solid‐phase extraction. Chromatographic separation of the analytes and their internal standards was carried out on a reversed‐phase ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile–15 mm ammonium acetate, pH 4.5 (70:30, v/v) as the mobile phase. To achieve higher sensitivity and selectivity for the analytes, mass spectrometric analysis was performed using a polarity switching approach. Ion transitions studied using multiple reaction monitoring mode were m/z 130.1 [M + H]+/60.1 for metformin and m/z 467.1 [M + CH3COO]?/329.1 for dapagliflozin in the positive and negative modes, respectively. The linear calibration range of the assay was established from 1.00 to 2000 ng/mL for metformin and from 0.10 to 200 ng/mL for dapagliflozin to achieve a better assessment of the pharmacokinetics of the drugs. The limit of detection and limit of quantitation for the analytes were 0.39 and 1.0 ng/mL for metformin and 0.03 and 0.1 ng/mL for dapagliflozin, respectively. There was no interference of plasma matrix obtained from different sources, including hemolyzed and lipemic plasma. The method was successfully applied to study the effect of food on the pharmacokinetics of metformin and dapagliflozin in healthy subjects.  相似文献   

18.
A highly sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method for simultaneous determination of glycyrrhizin (GL) and its active metabolite, glycyrrhetinic acid (GA), from human plasma was validated and applied to a human pharmacokinetic study. The analytes were extracted from human plasma using an Oasis MAX cartridge and chromatographic separation was performed on an Inertsil ODS‐3 column. The detection was performed using an API 4000 mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m /z 823 → 453 for GL and m /z 471 → 149 for GA were obtained. The response was a linear function of concentration over the ranges of 0.5–200 ng/mL for GL and 2–800 ng/mL for GA (both R 2 > 0.998). Using this method, the pharmacokinetics of GL after single oral administration of a clinical dose (75 mg) to six healthy male Japanese volunteers were evaluated. GL was detected in the plasma of all subjects and the average peak concentration was 24.8 ± 12.0 ng/mL. In contrast, peak concentration of GA was 200.3 ± 60.3 ng/mL, i.e. ~8‐fold higher than that of GL. This is the first report clarifying pharmacokinetic profiles of GL and GA simultaneously at a therapeutic oral dose of a GL preparation.  相似文献   

19.
A sensitive and rapid LC–MS/MS method was developed and validated for the simultaneous quantitation of four HDAC inhibitors, namely belinostat (BST), panobinostat (PST), rocilinostat (RST) and vorinostat (VST), in mouse plasma as per regulatory guidelines. The analytes and internal standard were extracted from 50 μL mouse plasma by protein precipitation, followed by chromatographic separation using an Atlantis C18 column with an isocratic mobile phase comprising 0.1% formic acid–acetonitrile (25:75, v /v) at a flow rate of 0.5 mL/min within 2.5 min. Detection and quantitation were done by multiple reaction monitoring on a triple quadrupole mass spectrometer following the transitions: m/z 319 → 93, 350 → 158, 434 → 274 and 265 → 232 for BST, PST, RST and VST, respectively, in the positive ionization mode. The calibration curves were linear from 2.92 to 2921 ng/mL for BST and PST and from 1.01 to 1008 ng/mL for RST and VST with r 2 ≥ 0.99 for all of the analytes. The intra‐ and inter‐batch accuracy and precision (CV) across quality controls varied from 85.5 to 112% and from 2.30 to 12.5, respectively, for all of the analytes. Analytes were found to be stable under different stability conditions. The method was applied to an i.v. pharmacokinetic study in mice.  相似文献   

20.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号