首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After (R)‐12‐hydroxystearic acid (HSA) was mixed at 100 °C with the castor oil‐modified poly(ε‐caprolactone) (CO‐PCL) prepared by the ring‐opening polymerization of ε‐caprolactone in the presence of castor oil, the mixture was gradually cooled to room temperature to give a solidified CO‐PCL/HSA composite. The CO‐PCL/HSA sample showed an exothermic peak at around 67–71 °C which was lower than the melting point of HSA (76.8 °C), indicating the formation of mesogenic HSA aggregates. The rheological measurement of the CO‐PCL/HSA revealed the formation of HSA organogel at around 67–55 °C during the cooling process from the melt. Furthermore, the polarized and normal optical microscopic analyses of CO‐PCL/HSA on the cooling stage revealed that anisotropic fibrous materials are formed at around 60 °C and then the fibrous network propagated over the matrix polymer. The flexural modulus and storage modulus of the CO‐PCL/HSA composite increased with increasing HSA content. The CO‐PCL/HSA composite annealed at 60 °C for 2 h on the cooling process had a higher flexural and storage modulus than the sample without annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1281–1289, 2010  相似文献   

2.
A novel fluorescent‐labeled amphiphilic random terpolymer is synthesized by controlled radical polymerization of a fluorescent molecular rotor monomer, 2‐cyano‐2‐[4‐vinyl(1,1′‐biphenyl)‐4′‐yl]vinyljulolidine, a hydrophilic monomer, poly (ethylene glycol) methyl ether methacrylate, and a hydrophobic monomer, perfluorohexylethyl acrylate. Combined dynamic light scattering and fluorescence emission spectroscopy measurements are used to investigate its self‐assembly in water solution. Self‐assembled nanostructures with a hydrodynamic diameter size Dh of 4 ± 1 nm are detected due to the single‐chain folding of the terpolymer in unimer micelles. The fluorescence emission intensity of the terpolymer in water solution is found to be one order of magnitude higher than that in organic solvents, as a result of the preferential encapsulation of the julolidine co‐units in hydrophobic compartments of the unimer micelles. The temperature dependence of the self‐associative behavior of the amphiphilic terpolymer is also investigated and a critical temperature is identified at which a transition between single‐chain unimer micelles and multi‐chain aggregates (Dh = 400 ± 40 nm) reversibly takes place on heating–cooling cycles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 797–804  相似文献   

3.
Cationic ring opening polymerization at a lower temperature range/faster polymerization than ordinary benzoxazine resins has been achieved without added initiators or catalysts via liquid crystalline (LC) benzoxazine resins. Faster polymerization is observed even above the liquid crystal forming temperature. The FTIR spectra show that opening of the oxazine ring occurs even at 110 °C generating phenolic groups that auto‐catalyzed the cationic polymerization of the monomer increasing the rate of polymerization. The newly formed H‐bonds inhibit the formation of LC phases after polymerization. Some of the monomers show nematic LC transitions upon cooling. None of them showed LC transitions during the heating cycle, exhibiting monotropic LC phases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5871–5881, 2009  相似文献   

4.
A new photoresponsive amphiphilic triblock copolymer, poly(pyrenylmethyl methacrylate)‐block‐polystyrene‐block‐poly(ethylene oxide) (PPy‐b‐PSt‐b‐PEO), was synthesized using atom‐transfer radical polymerization. Formation of colloidal aggregates of the polymer was observed in solutions under controlled conditions due to the amphiphilic nature of the polymer. Irradiation of the polymer aggregates using UV light resulted in the photodissociation of 1‐pyrenemethanol units from the polymer back‐bone resulting in break‐up of the aggregates mainly due to the hydrophilic nature of the residual polymer. The use of these polymer aggregates to trap hydrophobic fluorescent dyes in water and its controlled release on exposure to UV light has also been explored. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
We report the H‐type supramolecular polymerization of two new hydrophobic BODIPY derivatives equipped with ester and amide linkages. Whereas the ester‐containing BODIPY derivative undergoes an isodesmic supramolecular polymerization in which the monomers are parallel‐oriented, the replacement of the ester by amide groups leads to a highly cooperative self‐assembly process into H‐type aggregates with a rotational displacement of the dye molecules within the stack. The dye organization imposed by simultaneous π–π and hydrogen bonding interactions is the driving force for the cooperative supramolecular polymerization, whereas the absence of additional hydrogen bonds for the ester‐containing moiety does not suffice to induce cooperative phenomena.  相似文献   

6.
Nonisothermal crystallization of several polymers was investigated with differential scanning calorimetry and optical microscopy. The results indicated that as in the case of isothermal processes, crystallization starts with nucleation on noncompletely melted crystalline residues. It is assumed that if the crystalline residues are subcritical at melting temperatures, they can become stable by an athermal mechanism during cooling. There is also some contribution of nucleation on heterogeneities. The next mechanism of nucleation is a classical homogeneous process occurring by thermal fluctuations. The results showed the non‐steady‐state character of the nonisothermal crystallization of polymers. In the investigated range of cooling rates, the non‐steady‐state character of nonisothermal crystallization of polymers is dominated by the transient thermal effects. In the range of high temperatures, the transient homogeneous nucleation can be interpreted with the Ziabicki model, and the steady‐state rate determined from nonisothermal experiments coincides with the rate determined in isothermal crystallization. The athermal nucleation occurring at the beginning of crystallization from noncompletely melted aggregates seems to be independent of the applied cooling rate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 68–79, 2003  相似文献   

7.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
The radical polymerization of three monomers bearing nucleobases 1‐(4‐vinylbenzyl)thymine (VBT), 1‐(4‐vinylbenzyl)uracil (VBU) and 9‐(4‐vinylbenzyl)adenine (VBA) was investigated. The corresponding homopolymers could be prepared in high yields via conventional radical polymerization. However, the resulting polymers were found to be only soluble in a few polar solvents. On the other hand, copolymers of dodecyl methacrylate (DMA) with either VBT or VBA could be prepared via both free radical polymerization and atom transfer radical polymerization and could be dissolved in a large variety of organic solvents. Moreover, the formed complementary copolymers P(VBT‐co‐DMA) and P(VBA‐co‐DMA) were found to self‐assemble in dilute solutions in dioxane or chloroform via base recognition, as evidenced by a significant hypochromicity effect in UV spectroscopy. Nevertheless, at higher concentrations in chloroform, both dynamic light scattering and optical microscopy indicate that P(VBT‐co‐DMA), P(VBA‐co‐DMA), or P(VBT‐co‐DMA)/P(VBA‐co‐DMA) mixtures spontaneously self‐assemble into micron size spherical aggregates. 1H NMR and FTIR studies confirmed that the self‐assembly process is driven in all cases via H‐bond formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4805–4818, 2005  相似文献   

9.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

10.
Herein, we describe the role of end functional groups in the self‐assembly of amide‐functionalized oligo(p‐phenylenevinylene) (OPV) gelators with different end‐groups. The interplay between hydrogen‐bonding and π‐stacking interactions was controlled by the bulkiness of the end functional groups, thereby resulting in aggregates of different types, which led to the gelation of a wide range of solvents. The variable‐temperature UV/Vis absorption and fluorescence spectroscopic features of gelators with small end‐groups revealed the formation of 1D H‐type aggregates in CHCl3. However, under fast cooling in toluene, 1D H‐type aggregates were formed, whereas slow cooling resulted in 2D H‐type aggregates. OPV amide with bulky dendritic end‐group formed hydrogen‐bonded random aggregates in toluene and a morphology transition from vesicles into fibrous aggregates was observed in THF. Interestingly, the presence of bulky end‐group enhanced fluorescence in the xerogel state and aggregation in polar solvents. The difference between the aggregation properties of OPV amides with small and bulky end‐groups allowed the preparation of self‐assembled structures with distinct morphological and optical features.  相似文献   

11.
Using atom transfer radical polymerization (ATRP) and macromolecular azo coupling reaction, both o‐nitrobenzyl (ONB) group and azobenzene group were efficiently incorporated into the center of the amphiphilic diblock copolymer chain. The prepared diblock copolymer was well characterized by UV–vis, 1H NMR, and GPC methods. Self‐assembly of the amphiphilic copolymer in selected solvents can result in uniform self‐assembly aggregates. In the presence of external stimuli [upconversion nanoparticles (UCNPs)/NIR light or enzyme], the amphiphilic diblock copolymer chain could be broken by the cleavage of ONB or azobenzene group, which would lead to the disruption of the self‐assembly aggregates. This photo‐ and enzyme‐triggered disruption process was proved by using transmission electron microscopy (TEM) and GPC method. Fluorescence emission spectra measurements indicated that the release of Nile red, a hydrophobic dye, encapsulated by the self‐assembly aggregates, could be successfully realized under the NIR light and enzyme stimuli. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2450–2457  相似文献   

12.
Diethyleneglycol methylethermethacrylate(MeO2MA) and oligoethylene glycol methylethermethacrylate(OEGMA) are polymerized on polythiophene(PT) backbone to produce water‐soluble PT‐g‐PMeO2MA(PTD) and PT‐g‐P(MeO2MA‐co‐OEGMA)(PTDO) using atom transfer radical polymerization. They are characterized by 1H NMR and GPC techniques. TEM micrographs indicate that PT‐chains self‐organize as nanospheres, and atomic force micrographs suggest that aggregated PT‐chains are present at the centre surrounded by dispersed PMeO2MA fibers producing miceller‐type aggregates. Dynamic light scattering study indicates an initial decrease followed by sharp increase of Z‐average particle size of PTD with temperature for attaining lower critical solution temperature (LCST) at 20 °C. The LCST increases with OEGMA concentration in PTDO. The temperature dependent PL emission of PTD shows a minimum at 19 °C, followed by a sharp increase till 21 °C, and in the cooling cycle, it shows a complete reversibility. In the PTDO copolymers, the PL intensity shows the hike at progressively higher temperatures due to the increase of LCST with increasing OEGMA concentration. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The series of 9‐acridyl derivatives of aromatic amines have been investigated as fluorescent probes for monitoring the progress of free‐radical polymerization. This study on the changes in the fluorescence intensity and spectroscopic shift of specific compounds was carried out during thermally initiated polymerization of methyl methacrylate and photoinitiated polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate‐1‐methyl‐2‐pyrrolidonone mixture. The purpose of this investigation was to find a relationship between the changes in the shape and intensity of fluorescent probes and the degree of monomer conversion into a polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3481–3488, 2002  相似文献   

14.
A novel method for the preparation of poly(acrylamide) cryogels by photoinitiated polymerization of monomeric precursors was described. A series of poly(acrylamide) cryogels were easily prepared by irradiating aqueous solutions containing acrylamide and N,N′‐methylene(bis)acrylamide as monomer and cross‐linker, respectively, in the presence of 1‐[4‐(2‐hydroxyethoxy)phenyl]‐2‐hydroxy‐2‐methyl‐1‐propane‐1‐one (Irgacure 2959) as water‐soluble photoinitiator with the help of freezing–thawing procedures. Photolysis was conducted at ?13 °C isothermally through specially designed cryostat‐integrated Rayonet merry‐go‐round photoreactor. On comparing the described photochemical method with the conventional redox counter part, the polymerization is initiated, and gelation proceeds only on external stimulation by light. This way, concomitant hydrogel formation usually observed with the redox process as a result of premature polymerization during the cooling process was prevented. The obtained cryogels exhibited superfast swelling behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures, in the presence of fluorinated‐alcohols, produced heterotactic polymer comprising an alternating sequence of meso and racemo dyads. The heterotacticity reached 70% in triads when polymerization was carried out at ?40 °C using nonafluoro‐tert‐butanol as the added alcohol. NMR analysis revealed that formation of a 1:1 complex of NIPAAm and fluorinated‐alcohol through C?O···H? O hydrogen bonding induces the heterotactic specificity. A mechanism for the heterotactic‐specific polymerization is proposed. Examination of the phase transition behavior of aqueous solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase transition between the heating and cooling cycles depended on the average length of meso dyads in poly(NIPAAm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2539–2550, 2009  相似文献   

16.
The helical stereomutation in the kinetically controlled coassembly of the reported carbonyl‐bridged triarylamines (CBTs) is described. The copolymerization of chiral CBTs (S)‐1 or (R)‐1 with achiral 2 in sergeants‐and‐soldiers (SaS) experiments results in a tunable helicity conditioned by the percentage of the chiral sergeant and by the cooling rate. The dissimilar inherent chirality of the extended monomeric (M) and intramolecularly H‐bonded metastable (M*) species, as well as the different stability of the kinetic trap of the chiral CBTs (S)‐1 / (R)‐1 and the achiral CBT 2 , condition the chirality transfer and afford J‐aggregates of inverse handedness.  相似文献   

17.
The aggregation of achiral sulfonatophenyl‐ and phenyl‐meso‐substituted diprotonated porphyrins to chiral J‐aggregates is a hierarchical noncovalent polymerization process preceded by a critical nucleation stage. This allows significant enantiomeric excesses by the formation of a few primary nuclei and the control of their growth by the effect that flows (imperfect mixing) have on the secondary nucleation of the J‐aggregate particles. In addition, the results strongly suggest that when only one species of aggregate predominates, the CD signals of the three excitonic bands in the visible region (around 420, 490, and 700 nm) show the same sign. Thus, differences on their relative sign would be due to the presence of different species.  相似文献   

18.
By using pentyl‐linked bis(rhodamine)‐derived tetra‐siloxane (PRh‐Si4) as the organosilica precursor, highly ordered PRh‐bridged periodic mesoporous organosilicas (PRhPMOs) were prepared. When excited at λ=500 nm, the PRhPMO suspension that contained metal ions showed two separate emission peaks at λ=550 and 623 nm. The first peak, located at λ=550 nm, was due to ring‐opening of the spiro structure in the rhodamine moiety and the second, located at λ=623 nm, originated from fluorescent aggregates of the PRh units embedded in the silica framework of the PRhPMO. By using the different intensity ratios of the two fluorescence signals (FI550/623), PRhPMOs could be used as turn‐ON type fluorescent ratiometric chemosensors for Cu2+. Furthermore, based on the single‐exciton theory, it was deduced that the fluorescent aggregates formed were of the J‐type and had a coplanar configuration. Consequently, PRhPMOs display a longer fluorescence lifetime and greater fluorescent quantum yield than the respective monomers dissolved in solution, which is consistent with the experimental results.  相似文献   

19.
The three‐step polymerization of a well‐defined polymeric silane coupling agent, triethoxysilyl‐terminated polystyrene, catalyzed by acid (H3PO4), was traced as a function of the reaction time with gel permeation chromatography (GPC). Time‐resolved GPC traces collected during the polymerization process were then used to construct two‐dimensional (2D) correlation maps via generalized 2D correlation analysis. The results demonstrated that the synchronous and asynchronous 2D correlation GPC spectra directly reflected the dynamic variation of aggregate–aggregate interactions during each step of the polymerization. In particular, it was found that the formation of aggregates among the cyclic trimers (or tetramers) and monomers was critical for the preferential production of pentamers in the reaction system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3447–3460, 2004  相似文献   

20.
Fluorescence spectroscopy was used to study the kinetics of polymerization of acrylic adhesive formulations exposed to a 355‐nm pulsed emission from an Nd‐YAG laser. Nine fluorescent probes were used for monitoring the laser curing, showing different sensitivities. In general, the fluorescence intensity emission increased as crosslinking occurred. In addition, solvatochromic fluorescent probes showed a blueshift in their emission. A relative method was applied for the evaluation of the polymerization rates in three different acrylic systems. Special features of pulsed‐laser‐induced polymerization were treated in detail, such as the influence of the laser pulse frequency and the incident laser beam intensity. The polymerization rate slowed down as the pulse repetition rate decreased. An inhibition period due to oxygen quenching was observed, and it was highly dependent on the laser repetition rate and the nature of the photoinitiator. The effect of the laser beam intensity on the kinetics of such fast reactions was studied. In general, increasing the laser energy improved the rate of polymerization. The degree of cure improved as the polymerization rate increased as a result of faster crosslinking, rather than relaxation volume kinetics. Moreover, a saturation rate effect occurred that depended on the photoinitiator. The different behaviors of the two photoinitiators in the curing of the same acrylic formulation was explained on the basis of primary radical termination. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1227–1238, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号