首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc complexes supported by tertiary 1,3,5‐triazapenta‐1,3‐dienate ligand (L1) and N ‐benzoyl‐N′ ‐arylbenzamidinate [aryl =2,6‐diisopropylphenyl (L2), phenyl (L3)] ligands have been synthesized and characterized. The reaction of L1H with ZnEt2 affords a mononuclear zinc complex [L1ZnEt] ( 1 ) in good yield. Tetra nuclear zinc complex [(L1)2Zn4O(OAc)4] ( 2 ) is prepared by treating L1H with one equivalent of Zn(OAc)2 in toluene. Further, dinuclear zinc complexes [L2ZnEt]2 ( 3 ) and [L3ZnEt]2 ( 4 ) are obtained in good yields from L2H and L3H with ZnEt2 in toluene respectively. The complexes 1–4 have been characterized by 1H/13C NMR spectroscopy and single crystal X‐ray diffraction studies. All of the complexes have been explored for their catalytic activity toward the ring‐opening polymerization (ROP) of ε ‐caprolactone. It has been found that complex 1 is an active catalyst for the polymerization of ε ‐caprolactone in presence of a cocatalyst benzyl alcohol (BnOH). While complex 2 is as active as 1 there is no need for a cocatalyst for the polymerization to proceed. Dinuclear zinc complexes 3 and 4 show very high activity for the ROP of ε ‐caprolactone (CL) and rac ‐lactide (LA) without requiring a cocatalyst. The resultant polymers are found to have very high molecular weight (M n = 296 X 103 g mol−1) and relatively narrow polydispersity index compared to 1 and 2 .  相似文献   

2.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

3.
A series of para‐toluene sulfonamide ligands [TsNHPr‐i( HL 1 ), TsNHBu‐t( HL 2 ), TsNHPh( HL 3 ), TsNHPhMe‐p( HL 4 ), TsNHPhOMe‐p( HL 5 )] were synthesized by amidation using para‐toluene sulfonyl chloride reacting with different primary amines. A series of homoleptic lanthanide complexes (Ln L3, 1–10) (Ln = La, L = L1 ( 1 ), Ln = Gd, L = L2 ( 2 ), Ln = La, L = L2 ( 3 ), Ln = Gd, L = L2( 4 ), Ln = La, L = L3 ( 5 ), Ln = Gd, L = L3 ( 6 ), Ln = La, L = L4 ( 7 ), Ln = Gd, L = L4( 8 ), Ln = La, L = L5 ( 9 ), Ln = Gd, L = L5 ( 10 )) were prepared by amine elimination reactions of the ligands with Ln[N(SiMe3)2]3 (Ln = La, Gd). Complexes 1 , 3 , 5 , 7 and 9 were all characterized by NMR spectra, and the structures of complex 3 was determined by single‐crystal X‐ray diffraction. Complex 3 crystallizes a binuclear cluster, consisting of two La3+ and six (TsNBu‐t) anions. Three (TsNBu‐t) anions are chelating to each La3+ as bidentate model with O and N forming three‐membered chelate rings; one of three anions is bridging to another La3+ via oxygen. All complexes were characterized using elemental analysis and infrared spectra. The catalytic properties of complexes 1–10 for the ring‐opening polymerization of ε‐caprolactone were studied and the results showed that all complexes are efficient initiators for this ring‐opening polymerization reaction.  相似文献   

4.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

6.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

7.
Totally sixteen new titanium and zirconium non-Cp complexes supported by Schiff-base, or thiophene diamide ligands have been synthesized. The complexes are obtained by the reaction of M(OPr-i)4(M=Ti,Zr) with the corresponding Schiff-base ligand in 1:1 molar ratio in good yield. The thiophene diamide titanium complex has been prepared from trimethylsilyl amine [N,S,N] ligand and TiCl4 in toluene at 120℃. All complexes are well charac-terized by ^1H NMR, IR, MS and elemental analysis. When activated by excess methylaluminoxane (MAO), complexes show moderate catalytic activity for ethylene polymerization, and complex If (R^1=CH3,R^2=Br) exhibits the highest activity for ethylene and styrene polymerization. When the complexes were preactivated by triethylaluminum (TEA), both polymerization activities and syndiotacticity of the polymers were greatly improved.  相似文献   

8.
Styrene–norbornene (S‐N) copolymerizations were carried out using β‐diketiminato nickel complexes CH{C(CF3)NAr}2NiBr (Ar = 2,6‐iPr2C6H3, 1 ; Ar = 2,6‐Me2C6H3, 2 ) in the presence of methylaluminoxane. The influence of the comonomer feed content and polymerization temperature on the conversion and composition of the copolymers with the catalytic system was investigated. An increase in the feed ratio of S/N led to an increase in the incorporated styrene content of the resulting copolymer. NMR characterization of the copolymers generated with the catalytic systems showed that the random S‐N copolymers are produced. Differential scanning calorimetric determination of the copolymers shows higher Tg values than polystyrene, and gel permeation chromatographic measurements have shown that the copolymers possess rather narrow molecular weight distributions, suggesting that the copolymerization take place at a single active site. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Upon activation with diethylaluminium chloride (Et2AlCl), a series of phenyl‐substituted α‐diimine nickel precatalysts conducted 4‐methyl1pentene (4MP) and ethylene (E) (co)polymerizations via controlled chain‐walking to generate branched amorphous polymers with high molecular weight and narrow molecular weight distribution (Mw/Mn < 1.6). The obtained poly(4MP)s were amorphous elastomers with glass transition temperature (Tg) of ?10 ~ ?24 °C, which are higher than that of E‐4MP copolymer ( ? 63.0 °C). At room temperature (25 °C), 4MP polymerization proceeds in a living manner. The microstructures of the produced poly(4MP)s indicated the 2,1 and 1,2insertion followed by chain‐walking, the latter being predominant. The NMR analyses of the polymers showed that the obtained poly(4MP) possessed methyl, isobutyl, 2,4dimethylpentyl and 2methylhexyl groups, while the isobutyl and 2,4dimethylalkyl branches derived from 4MP were observed in the E‐4MP copolymer. The branch structures and the insertiontype of monomer were depended on the polymerization temperature, and the content of methyl branch increased with an increase in the polymerization temperature.  相似文献   

10.
A series of efficient zinc catalysts supported by sterically bulky benzotriazole phenoxide ( BTP ) ligands are synthesized and structurally characterized. The reactions of diethyl zinc (ZnEt2) with CMe2PhBTP ‐H, t‐BuBTP ‐H, and TMClBTP ‐H yield monoadduct [(μ‐ BTP )ZnEt]2 ( 1 – 3 ), respectively. Bisadduct complex [( t‐BuBTP )2Zn] ( 4 ) results from treatment of ZnEt2 with t‐BuBTP ‐H (2 equiv.) in toluene, but treatment of TMClBTP ‐H with ZnEt2 in the same stoichiometric proportion in Et2O produces five‐coordinated monomeric complex [( TMClBTP )2Zn(Et2O)] ( 5 ). The molecular structures of compounds 1 , 4 , and 5 are characterized by X‐ray crystal structure determinations. All complexes 1 – 5 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) in the presence of 9‐anthracenemethanol. Experimental results indicate that complex 3 exhibits the greatest activity with well‐controlled character among these complexes. The polymerizations of ε‐CL and β‐butyrolactone catalyzed by 3 are demonstrated in a “living” character with narrow polydispersity indices (monomer‐to‐initiator ratio in the range of 25–200, PDIs ≤ 1.10). The “immortal” character of 3 provides a way to synthesize as much as 16‐fold polymer chains of poly(ε‐CL) (PCL) with narrow PDI in the presence of a catalyst in a small proportion. The controlled fashion of complex 3 also enabled preparation of the PCL‐b‐poly(3‐hydroxybutyrate) copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Two C–C bridged Ni(II) complexes bearing β‐keto‐9‐fluorenyliminato ligands with electron‐withdrawing groups (─CF3), Ni{PhC(O)CHC[N(9‐fluorenyl)]CF2}2 (Ni 1 ) and Ni{CF3C(O)CHC[N(9‐fluorenyl)]Ph}2 (Ni 2 ), were synthesized by metal coordination reaction and different in situ bonding mechanisms. The C–C bridged bonds of Ni 1 were formed by in situ intramolecular trifluoromethyl and 9‐fluorenyl carbon–carbon cross‐coupling reaction and those of Ni 2 were formed by in situ intramolecular 9‐fluorenyl carbon–carbon radical coupling reaction mechanism. The obtained complexes were characterized using 1H NMR spectroscopy and elemental analyses. The crystal and molecular structures of Ni 1 and Ni 2 with C–C bridged configuration were determined using X‐ray diffraction. Ni 1 and Ni 2 were used as catalysts for norbornene (NB) polymerization after activation with B(C6F5)3 and the catalytic activities reached 106 gpolymer molNi?1 h?1. The copolymerization of NB and styrene catalyzed by the Ni 1 /B(C6F5)3 system showed high activity (105 gpolymer molNi?1 h?1) and the catalytic activities decreased with increasing feed content of styrene. All vinyl‐type copolymers exhibited high molecular weight (104 g mol?1), narrow molecular weight distribution (Mw/Mn = 1.71–2.80), high styrene insertion ratios (11.13–50.81%) and high thermal stability (Td > 380°C) and could be made into thin films with high transparency in the visible region (400–800 nm).  相似文献   

12.
A series of chalcone ligands and their corresponding vanadyl complexes of composition [VO (LI–IV)2(H2O)2]SO4 (where LI = 1,3‐Diphenylprop‐2‐en‐1‐one, LII = 3‐(2‐Hydroxy‐phenyl)‐1‐phenyl‐propenone, LIII = 3‐(3‐Nitro‐phenyl)‐1‐phenyl‐propenone, LIV = 3‐(4‐Methoxy‐phenyl)‐1‐phenyl‐propenone) have been synthesized and characterized using various spectroscopic (Fourier‐transform infrared, electrospray ionization mass, nuclear magnetic resonance, electron paramagnetic resonance, thermogravimetric analysis, vibrating sample magnetometer) and physico‐analytic techniques. Antidiabetic activities of synthesized complexes along with chalcones were evaluated by performing in vitro and in silico α‐amylase and α‐glucosidase inhibition studies. The obtained results displayed moderate to significant inhibition activity against both the enzymes by vanadyl chalcone complexes. The most potent complexes were further investigated for the enzyme kinetic studies and displayed the mixed inhibition for both the enzymes. Further, antioxidant activity of vanadyl chalcone complexes was evaluated for their efficiency to release oxidative stress using 2,2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate assay, and two complexes (Complexes 2 and 4 ) have demonstrated remarkable antioxidant activity. All the complexes were found to possess promising antidiabetic and antioxidant potential.  相似文献   

13.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

14.
Magnesium (Mg) and zinc (Zn) complexes incorporating tridentate anilido‐aldimine ligand, (E)‐2, 6‐diisopropyl‐N‐(2‐((2‐(piperidin‐1‐yl)ethylimino)methyl)phenyl)aniline ( AA Pip ‐H, 1 ), were synthesized and structurally characterized. The reaction of AA Pip ‐H ( 1 ) with MgnBu2 or ZnEt2 in equivalent proportions afforded the monomeric complex [( AA Pip )MgnBu] ( 2 ) or [( AA Pip )ZnEt] ( 3 ), respectively. The coordination modes of these complexes differ in the solid state: Mg complex 2 shows a four‐coordinated and distorted tetrahedral geometry, whereas Zn complex 3 adopts a trigonal planar geometry with a three‐coordinated Zn center. Complexes 2 and 3 are efficient catalysts for the ring‐opening polymerization of β‐butyrolactone (β‐BL) in the presence of 9‐anthracenemethanol (9‐AnOH). The polymerization of β‐BL with the Zn catalyst system is demonstrated in a living fashion with a narrow polydispersity index, PDI = 1.01–1.10. The number‐averaged molecular weight (Mn) of the produced poly(3‐hydroxybutyrate) (PHB) is quite close to the expected Mn over diverse molar ratios of monomer to 9‐AnOH. A greater ratio of monomer to alcohol catalyzed by Zn complex 3 served to form PHB with a large molecular weight (Mn > 60000). An effective method to prepare PHB‐b‐PCL and PEG‐b‐PHB by the ring‐opening copolymerization of β‐BL catalyzed by zinc complex 3 is reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

16.
Several titanium complexes based on aminodiol ligands were tested as initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone under solution and bulk conditions. All complexes were found to be efficient under both conditions. For bulk polymerization at 70 °C, high activities were observed (113.3–156.2 gpoly mmolcat?1 h?1) together with controlled molar mass distribution. Kinetic studies revealed controlled polymerization, and the chain propagation was first order with respect to monomer conversion. One complex was also tested for the ROP of rac‐β‐butyrolactone and the end‐group analysis suggested that ring opening occurs through acyl‐oxygen bond cleavage via coordination–insertion mechanism. The microstructure analysis of polymer by 13C NMR indicates atactic polymer. Another complex was also found to be efficient initiator for the ROP of trimethylene carbonate under solution and bulk conditions. Again, end‐group analysis suggests coordination–insertion mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59  相似文献   

18.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

19.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

20.
A series of novel aluminum complexes containing bulky aryl‐βketiminato ligands [ArNCH C10H7C6H5O]Al(CH3)2 ( 3a , Ar = C6F5; 3b , Ar = C6H5; 3c , Ar = 2,6‐iPr2C6H3) have been synthesized in high yields. These complexes were identified by 1H and 13C NMR spectroscopy, elemental analysis, and Xray structural analysis. All the aluminum complexes could efficiently catalyze the ROP of ɛ‐caprolactone (ɛ‐CL) and Lactide (LA) in a controlled manner. It was found that the steric effect of the ligand has less effect on the ROP of CL, while the polymerization rate of L‐LA was suppressed significantly. More interestingly, this kind of catalysts can promote the random copolymerization of ɛ‐CL and L‐LA. The transesterification side reaction and the polymer composition could be adjusted by modulating the electronic and steric effects of the ligand. In paticular, compound 3c could produce quasi‐random copolymers without transesterification side reactions, as indicated by both the values of the reactivity ratios of the two monomers (rLA = 1.31; rCL = 0.99) and the similar average lengths of the caproyl and lactidyl sequences (LCL = 2.34; LLA = 2.44). Finally, a drug‐random copolymer conjugates could be easily prepared by using 3c , indicating a potential application of 3c in pharmacutical and biomedical field. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 203–212  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号