首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report interesting photomechanical behaviors of the dynamic molecular crystals of (E )‐2‐(2,4‐dichlorostyryl)benzo[d]oxazole ( BOACl24 ). The photosalient effect of the rod‐like crystal based on a metal‐free olefin driven by photodimerization is observed. Moreover, the needle‐like crystals of BOACl24 exhibit a reversible bending away from a UV light source. The nanofibers curl easily under UV irradiation in an organogel, in which the photo‐induced rolling of a small slice occurs. This suggests that the rapid release of the accumulated strain during photodimerization may lead to a photosalient effect, and the bending or curling happens when the strain is released slowly. Notably, [2+2] cycloaddition takes place between two different conformational isomers of BOACl24 on account of the rotation of the benzoxazole ring around the C−C bond in an excited state before photodimerization. Such topo‐photochemical reaction has not been reported elsewhere.  相似文献   

2.
Transforming molecular motions into the macroscopic scale is a topic of great interest to nanoscience. The photomechanical effect is a promising strategy to achieve this goal. Herein, we report an intriguing photomechanical luminescence driven by the photodimerization of 2‐phenylbenzo[b]thiophene 1,1‐dioxide (P‐BTO) in molecular crystals and elucidate the working mechanism and substituent effect through crystallographic analysis and theoretical calculations. Striking splitting, hopping, and bending mechanical behaviors accompanied by a significant blue fluorescence enhancement are observed for P‐BTO crystals under UV light, which is attributed to the formation of photodimer 2P‐BTO. Although 2P‐BTO is poorly π‐conjugated because of the central cyclobutane ring, it exhibits prominent through‐space conjugation and aggregation‐induced emission (AIE), affording strong solid‐state blue fluorescence at 415 nm with an excellent quantum yield of up to 96.2 %.  相似文献   

3.
Photomechanical molecular crystals can undergo a variety of light‐induced motions, including expansion, bending, twisting, and jumping. The use of more complex crystal shapes may provide ways to turn these motions into useful work. To generate such shapes, pH‐driven reprecipitation has been used to grow branched microcrystals of the anthracene derivative 4‐fluoroanthracenecarboxylic acid. When these microcrystals are illuminated with light of λ=405 nm, an intermolecular [4+4] photodimerization reaction drives twisting and bending of the individual branches. These deformations drive a rotation of the overall crystal that can be repeated over multiple exposures to light. The magnitude and direction of this rotation vary because of differences in the crystal shape, but a typical branched crystal undergoes a 50° net rotation after 25 consecutive irradiations for 1 s. The ability of these crystals to undergo ratchet‐like rotation is attributed to their chiral shape.  相似文献   

4.
New diarylethene derivatives containing benzoxazole ( NBO ) and benzothiazole ( NBT ) have been synthesized. Light‐induced transcis isomerization of NBO and NBT took place in crystals, and only induced the needle‐like crystals of NBO to bend backwards away from the UV light source. The movement of the atoms was deemed to take place during the isomerization of NBO ; hence, strain would be produced and accumulated rapidly in the surface of crystals exposed to UV light. The uniform release of strain led to the bending of needle‐like crystals. The light‐induced transcis isomerization efficiency of NBT was too low to drive the motion of crystals, which might have originated from the large repulsion between naphthyl and benzothiazole. These results provide a new platform for the transformation of light energy into mechanical energy in molecular crystals through the unimolecular photochemical reaction of diarylethene derivatives.  相似文献   

5.
The photomechanical motion of chiral crystals of trans‐azobenzene derivatives with an (S)‐ and (R)‐phenylethylamide group was investigated and compared with a racemic crystal. Changes in the UV/Vis absorption spectra of the powdered crystals before and after UV irradiation were measured by using an optical waveguide spectrometer, showing that the lifetime of the cis‐to‐trans thermal back‐isomerization of the chiral crystals was faster than that of the racemic crystals. Upon UV irradiation, a long plate‐like chiral microcrystal bent away from the light source with a twisting motion. A square‐like chiral microcrystal curled toward the light with some twisting. Reversible bending of a rod‐like chiral microcrystal was repeatable over twenty‐five cycles. In contrast, bending of a plate‐like racemic microcrystal was small. A possible mechanism for the bending and twisting motion was discussed based on the optimized cis conformer determined by using calculations, showing that the bending motion with twisting is caused by elongation along the b axis and shrinkage along the a axis.  相似文献   

6.
Herein we report the synthesis and photophysical and supramolecular properties of a novel three‐dimensional capsule‐like hexa‐peri‐hexabenzocoronene (HBC)‐containing carbon nanocage, tripodal‐[2]HBC, which is the first synthetic model of capped zigzag [12,0] carbon nanotubes (CNTs). Tripodal‐[2]HBC was synthesized by the palladium‐catalyzed coupling of triboryl hexabenzocoronene and L‐shaped cyclohexane units, followed by nickel‐mediated C−Br/C−Br coupling and subsequent aromatization of the cyclohexane moieties. The physical properties of tripodal‐[2]HBC and its supramolecular host–guest interaction with C70 were further studied by UV/Vis and fluorescence spectroscopy. Theoretical calculations revealed that the strain energy of tripodal‐[2]HBC was as high as 55.2 kcal mol−1.  相似文献   

7.
Herein we report the synthesis and photophysical and supramolecular properties of a novel three‐dimensional capsule‐like hexa‐peri‐hexabenzocoronene (HBC)‐containing carbon nanocage, tripodal‐[2]HBC, which is the first synthetic model of capped zigzag [12,0] carbon nanotubes (CNTs). Tripodal‐[2]HBC was synthesized by the palladium‐catalyzed coupling of triboryl hexabenzocoronene and L‐shaped cyclohexane units, followed by nickel‐mediated C?Br/C?Br coupling and subsequent aromatization of the cyclohexane moieties. The physical properties of tripodal‐[2]HBC and its supramolecular host–guest interaction with C70 were further studied by UV/Vis and fluorescence spectroscopy. Theoretical calculations revealed that the strain energy of tripodal‐[2]HBC was as high as 55.2 kcal mol?1.  相似文献   

8.
Polymorphic salts of trans-1,2-bis(4-pyridyl)ethylene (bpe), 2 [bpeH2] ⋅ (SO4)(2HSO4) ( 1 ) and [bpeH2] ⋅ 2HSO4 ( 2 ) have been synthesized and their structures determined by X-ray crystallography. The Schmidt postulate predicts that neither of the salts will give rise to photodimerization so they can both potentially be applied as green light emitters. Despite the predictions, 1 undergoes a stereospecific solid-state photodimerization reaction with 100 % yield. This is due to UV induced combination of sliding and pedal-like movement of the pyridyl ring system that influences the alignment of C=C bonds. The sliding motion is restricted in 2 . Consequently, the green emission from 1 is completely quenched after photodimerization. It is evident that counter ions play a dominant role in dis- and enabling photodimerization; their degree of protonization and lattice placement are important solvent controlled design parameters towards crystal structures that can act as future light emitters.  相似文献   

9.
Transforming molecular motions into the macroscopic scale is a topic of great interest to nanoscience. The photomechanical effect is a promising strategy to achieve this goal. Herein, we report an intriguing photomechanical luminescence driven by the photodimerization of 2-phenylbenzo[b]thiophene 1,1-dioxide (P-BTO) in molecular crystals and elucidate the working mechanism and substituent effect through crystallographic analysis and theoretical calculations. Striking splitting, hopping, and bending mechanical behaviors accompanied by a significant blue fluorescence enhancement are observed for P-BTO crystals under UV light, which is attributed to the formation of photodimer 2P-BTO. Although 2P-BTO is poorly π-conjugated because of the central cyclobutane ring, it exhibits prominent through-space conjugation and aggregation-induced emission (AIE), affording strong solid-state blue fluorescence at 415 nm with an excellent quantum yield of up to 96.2 %.  相似文献   

10.
r‐1, c‐2, t‐3, t‐4‐1,3‐Bis[2‐(5‐R‐benzoxazolyl)]‐2,4‐di(4‐R'‐phenyl)cyclobutane (IIa: R=R' = H; IIb: R=Me, R'= H; IIc: R = Me, R' = OMe) was synthesized with high stereo‐selectivity by the photodimerization of trans‐l‐[2‐(5‐R‐benzoxazolyl)]‐2‐(4‐R'‐phenyl) ethene (Ia: R=R' = H; Ib: R = Me, R' = H; Ic: R = Me, R' = OMe) in sulfuric acid. The structures of IIa–IIc were identified by elemental analysis, IR, UV, 1H NMR, 13C NMR and MS. The molecular and crystal structure of IIc has been determined by X‐ray diffraction method. The crystal of IIc (C34H30N2O4. 0.5C2OH) is monoclinic, space group P21/n with cell dimensions of a = 1.5416(3), b =0.5625(1), c = 1.7875(4) nm, β = 91.56 (3)°, V= 1.550(1) nm3, Z = 2. The structure shows that the molecule of IIc is centrosymmetric, which indicates that the dimerization process is a head‐to‐tail fashion. The selectivity of the photodimerization of Ia–Ic has been enhanced by using acidic solvent and the reaction speed would be decreased when electron donating group was introduced in the 4‐position of the phenyl group. That the photodimerization is not affected by the presence of oxygen as well as its high stereo‐selectivity demonstrated that the reaction proceeded through an excited singlet state. It was also found that under irradiation of short wavelength UV, these dimers underwent photolysis completely to reproduce its trans‐monomers, and then the new formed species changed into their cis‐isomers through trans‐cis isomerization.  相似文献   

11.

Abstract  

The preparation and crystal structure of six molecular compounds consist of light-stable host molecules [(1-cyclohexyl-4-hydroxybenzene, 1,1,6,6-tetraphenyl-2,4-hexadiyne-1,6-diol, 4-((10-[4-(ethoxycarbonyl)phenoxy]decyl)oxy)benzene, 1,2,4,5-benzenetetracarboxylic acid, resorcinol] and light-sensitive guest molecules [(5-chloro-2(1H)-pyridone or 5-nitro-2(1H)-pyridone] are described in light of their failure to undergo [4 + 4] photodimerization in the solid-state upon irradiation with UV light. Unlike in many cases were pyridone and its derivatives undergo such dimerization in the solid-state due to the packing arrangement in the crystalline form in which the geometric requirement for photodimerization meet, the compounds described here failed to pack in ways to enable such photodimerization. The distances between the potentially reactive atoms ranged from 4.620 to 8.408 ? which are too long to react.  相似文献   

12.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

13.
We predict that the magnetic properties of [Cu(acac)2], an elastically flexible crystal, change drastically when the crystal is bent. It is found that unbent [Cu(acac)2] is an almost perfect Tomonaga–Luttinger liquid. Broken‐symmetry density‐functional calculations reveal that the magnetic exchange interactions along the chains are an order of magnitude larger than the interchain exchange. The geometrically frustrated interchain interactions cannot magnetically order the material at any experimentally accessible temperature. The ordering temperature (TN), calculated from the chain‐random‐phase approximation, increases by 24 orders of magnitude when the material is bent. We demonstrate that geometric frustration both suppresses TN and enhances the sensitivity of TN to bending. In [Cu(acac)2], TN is extremely sensitive to bending but remains too low for practical applications, even when bent. Partially frustrated materials could achieve the balance of high TN and good sensitivity to bending required for practical applications of mechanomagnetic elastic crystals.  相似文献   

14.
The photodimerization of 1,2‐bis(5′‐pyrimidyl)ethene in the solid state is reported. Photolysis of the crystalline solid formed on self‐assembly of 1,2‐bis(5′‐pyrimidyl)ethene and C‐methylcalix[4]resorcinarene and photolysis of the solid recystallized from dichloromethane yielded cis‐anti‐cis‐1,2,3,4‐tetrakis(5′‐pyrimidyl)cyclobutane as the only product. Single‐crystal X‐ray analysis of each of these solids confirms that the alkenes are π‐stacked, colinear, and separated by less than 4.2 Å.  相似文献   

15.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

16.
The newly synthesized 2‐(alk‐3‐en‐1‐ynyl)cyclohex‐2‐enones 4 undergo photodimerization (chemo‐ and regio‐)selectively at the exocyclic C?C bond to give diastereoisomeric mixtures of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes. On irradiation of 4 in the presence of 2‐chloroacrylonitrile, cyclobutane formation occurs again (chemo‐ and regio‐)selectively at the exocyclic C?C bond to afford diastereoisomeric mixtures of 2‐alkynyl‐1‐chloro‐2‐methylcyclobutanecarbonitriles. Similarly, compounds 4 undergo photoaddition to 2,3‐dimethylbuta‐1,3‐diene exclusively at the exocyclic C?C bond to afford mixtures of [2+2] and [4+2] cycloadducts.  相似文献   

17.
Inner cavity of Pd-nanocage has been used as a reaction vessel for performing triplet sensitized [2+2] photodimerization of acenaphthylene using water soluble xanthene dyes (Eosin Y and Rose Bengal) as sensitizers, and [4+4] photodimerization of 9-anthraldehyde. Although the [4+4] photodimerization of 9-anthraldehyde gave similar results to solution reaction, the xanthene dye sensitized [2+2] triplet state photodimerization of acenaphthylene encapsulated within Pd-nanocage yielded the syn dimer in quantitative yield. The results obtained from the triplet state [2+2] photodimerization of acenaphthylene within Pd-nanocage is remarkable given the fact that the photodimerization reaction when performed in methanol in the presence of Eosin Y and Rose Bengal gave the syn and anti dimers in the ratio 0.5 and 0.6, respectively. Preaggregation of molecules encapsulated inside Pd-nanocage in a syn fashion seems to be the governing factor for such a behavior.  相似文献   

18.
Polycrystalline anhydrous Hg2(NO3)2 was prepared by drying Hg2(NO3)2·2H2O over concentrated sulphuric acid. Evaporation of a concentrated and slightly acidified mercury(I) nitrate solution to which the same volumetric amount of pyridine was added, led to the growth of colourless rod‐like single crystals of Hg2(NO3)2. Besides the title compound, crystals of hydrous Hg2(NO3)2·2H2O and the basic (Hg2)2(OH)(NO3)3 were formed as by‐products after a crystallization period of about 2 to 4 days at room temperature. The crystal structure was determined from two single crystal diffractometer data sets collected at —100°C and at room temperature: space group P21, Z = 4, —100°C [room temperature]: a = 6.2051(10) [6.2038(7)]Å, b = 8.3444(14) [8.3875(10)]Å, c = 11.7028(1) [11.7620(14)]Å, ß = 93.564(3) [93.415(2)]°, 3018 [3202] structure factors, 182 [182] parameters, R[2 > 2σ(2)] = 0.0266 [0.0313]. The structure is built up of two crystallographically inequivalent Hg22+ dumbbells and four NO3 groups which form molecular [O2N‐O‐Hg‐Hg‐O‐NO2] units with short Hg‐O bonds. Via long Hg‐O bonds to adjacent nitrate groups the crystal packing is achieved. The Hg‐Hg distances with an average of d(Hg‐Hg) = 2.5072Å are in the typical range for mercurous oxo compounds. The oxygen coordination around the mercury dumbbells is asymmetric with four and six oxygen atoms as ligands for the two mercury atoms of each dumbbell. The nitrate groups deviate slightly from the geometry of an equilateral triangle with an average distance of d(N‐O) = 1.255Å.  相似文献   

19.
Visibly observed photocrosslinkable pendant liquid crystalline polymers containing indolyl based chalcone were synthesized by free‐radical polymerization and characterized spectroscopically. The differential scanning calorimetry and polarized optical microscopy were used to examine liquid crystalline property. The photocrosslinking and luminescence properties were monitored by UV‐Vis spectrophotometer and spectrofluorimeter, respectively. It demonstrates the chalcone unit did not manifest cis ? trans‐isomerization reaction along with 2π+2π photodimerization upon irradiation with UV light like other chalcones hitherto reported. The photocrosslinking was visibly monitored in solution through change of fluorescent color to colorless. The spacer lengths play a key role in the reaction. The fluorescence maximum was blue shifted around 70 nm in chloroform solution upon irradiation with UV light confirms the 2π+2π photodimerization of chalcone unit. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5208–5220, 2009  相似文献   

20.
Two new chiral alcohols, 2(S)‐[2(R)‐methylhexyloxy]propanol ( 5 ) and 2(S)‐[2(S)‐methylhexyloxy]propanol ( 6 ), were prepared from the corresponding propionic acid ethyl ester 1 and 2 in the presence of sodium borohydride. They were used as the chiral moiety for the synthesis of two diastereomeric liquid crystals 7 and 8 . Both of them exhibit the phase sequence I‐SmA‐SmC*‐SmX‐Cr. The mesogenic properties of the (S,S)‐diastereomer 8 are more unique in comparison with those of the (S,R)‐diastereomer 7. It possesses not only lower SmA and SmC* phase transition temperature, 103 °C vs. 112 °C for SmA phase and 31 °C vs. 65 °C for SmC* phase, but wider SmA and SmC* phase range, 40 °C vs. 31 °C for SmA phase and 72 °C vs. 47 °C for SmC* phase. The diastereomer 8 also has a larger Ps value than that of 7, 24 vs. 15 nC cm?2 measured at Tc ‐ T = 10 °C. The difference in these mesogenic properties is discussed by comparing their conformation difference at the molecular part of benzoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号