首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively.  相似文献   

3.
Caesalpinia sappan L . is a traditional medicinal plant which is used for promoting blood circulation and cerebral apoplexy therapy in China. Previous reports showed that the extracts of Caesalpinia sappan L . could exert vasorelaxant activity and anti‐inflammation activity. Protosappanin B is a major constituent of C. sappan L. , and showed several important bioactivities. The separation was achieved by an Acquity UPLC BEH Symmetry Shield RP18 column (1.7 μm, 2.1 × 100 mm) column with the gradient mobile phase consisting of 5 mm ammonium acetate aqueous solution and acetonitrile. Detection was carried out by using negative‐ion electrospray tandem mass spectrometry via multiple reaction monitoring. Plasma samples were preprocessed by an extraction with ethyl acetate, and apigenin was used as internal standard. The current UPLC–MS/MS assay was validated for linearity, accuracy, intraday and interday precisions, stability, matrix effects and extraction recovery. After oral and intravenous administration, the main pharmacokinetic parameters were as follows: peak concentrations, 83.5 ± 46.2 and 1329.6 ± 343.6 ng/mL; areas under the concentration–time curve, 161.9 ± 69.7 and 264.9 ± 56.3 μg h/L; and half‐lives, 3.4 ± 0.9 and 0.3 ± 0.1 h, respectively. The absolute bioavailability in rats of protosappanin B was 12.2%. The method has been successfully applied to a pharmacokinetic and bioavailability study of protosappanin B in rats.  相似文献   

4.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

6.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

7.
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h.  相似文献   

8.
Farrerol is a 2,3‐dihydro‐flavonoid isolated from rhododendron. In this study, a sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed for the determination of farrerol in rat plasma. Liquid–liquid extraction by ethyl ether was used for sample preparation. Chromatographic separation was achieved on an Agilent UHPLC XDB‐C18 column (2.1 × 100 mm, 1.8 μm) with water and methanol (30:70, v /v) as the mobile phase. An electrospray source was applied and operated in negative ion mode; selection reaction monitoring was used for quantification using target fragment ions m/z 299 → 179 for farrerol and m/z 267 → 252 for internal standard. Calibration plots were linear in the range of 2.88–1440 ng/mL for farrerol in rat plasma. Intra‐ and inter‐day precisions were <11.6%, and the accuracy ranged from −13.9 to 11.9%. The UHPLC–MS/MS method was successfully applied in pharmacokinetics and bioavailability studies of farrerol in rats.  相似文献   

9.
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC–MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90–114%, and inter-day accuracy was in the range of 97–103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0–48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0–48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.  相似文献   

10.
In this study, a rapid, sensitive, and reliable hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) method for the determination of eurycomanone in rat plasma was developed and validated. Plasma samples were pretreated with a protein precipitation method and quercitrin was used as an internal standard (IS). A HILIC silica column (2.1 × 100 mm, 3 μm) was used for hydrophilic‐based chromatographic separation, using the mobile phase of 0.1% formic acid with acetonitrile in gradient elution at a flow rate of 0.25 mL/min. Precursor–product ion pairs for multiple‐reaction monitoring were m /z 409.1 → 391.0 for eurycomanone and m /z 449.1 → 303.0 for IS. The linear range was 2–120 ng/mL. The intra‐ and inter‐day accuracies were between 95.5 and 103.4% with a precision of <4.2%. The developed method was successfully applied to the pharmacokinetic analysis of eurycomanone in rat plasma after oral dosing with pure compound and E. longifolia extract. The C max and AUC0–t , respectively, were 40.43 ± 16.08 ng/mL and 161.09 ± 37.63 ng h/mL for 10 mg/kg eurycomanone, and 9.90 ± 3.97 ng/mL and 37.15 ± 6.80 ng h/mL for E. longifolia extract (2 mg/kg as eurycomanone). The pharmacokinetic results were comparable with each other, based on the dose as eurycomanone.  相似文献   

11.
A sensitive, selective and high‐throughput UPLC‐MS/MS method was developed and validated for the determination of a novel c‐Met tyrosine kinase inhibitor, QBH‐196, in rat plasma. QBH‐196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N‐hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH‐196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0–4000 ng/mL (r2 > 0.99) for QBH‐196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra‐ and inter‐day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH‐196 in rats for the first time. The mean oral absolute bioavailability of QBH‐196 was found to be about 40.8% and the elimination half‐life was 40.0 ± 13.1 h. This result suggested that QBH‐196 exhibits good oral absorption in vivo, which is very important for the further development of QBH‐196 as a new oral anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A reliable and sensitive UPLC–MS/MS method was first established and validated for the simultaneous determination of seven active ingredients of Yaobitong capsule in rat plasma: ginsenoside Rg1, ginsenoside Rb1, osthole, tetrahydropalmatine, paeoniflorin, albiflorin, and ferulic acid. And this method was further applied for the integrated pharmacokinetic study of Yaobitong capsule in rats after oral administration. Plasma samples (100 μL) were precipitated with 300 μL of methanol using carbamazepine as internal standard. Chromatographic separation was achieved using an Aquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 μm), with the mobile phase consisting of 0.1% formic acid and acetonitrile. The method was validated using a good linear relationship (r ≥ 0.991), and the lower limit of quantification of the analytes ranged from 0.5 to 40 ng/mL. In the integrated pharmacokinetic study, the weight coefficient was calculated by the ratio of AUC0–∞ of each component to the total AUC0–∞ of the seven active ingredients. The integrated pharmacokinetic parameters Cmax, Tmax, and t1/2 were 81.54 ± 9.62 ng/mL, 1.00 ± 0.21 h, and 3.26 ± 1.14 h, respectively. The integration of pharmacokinetic parameters showed a shorter t1/2 because of fully considering the contribution of the characteristics of each active ingredient to the overall pharmacokinetics.  相似文献   

13.
This study firstly describes the development of an accurate and sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) assay for the quantification of Taiwanin E methyl ether (TEME) in rat plasma. The assay involved a simple liquid–liquid extraction step with ethyl acetate and a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Chromatographic separation was successfully achieved on an Agilent Zorbax‐C18 column (2.1 × 50 mm, 3.5 µm) with a flow rate of 0.40 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 379.1 → 320.1 for TEME and 386.1 → 122.0 for buspirone (internal standard). The assay was validated to demonstrate the specificity, linearity, recovery, accuracy, precision and stability. The lower limit of quantification was 0.50 ng/mL in 50 μL of rat plasma. The developed and validated method was successfully applied to the quantification and pharmacokinetic study of TEME in rats after intravenous and oral administration of 1.45 mg/kg TEME. The oral absolute bioavailability of TEME was estimated to be 5.85 ± 1.41% with an elimination half‐life value of 2.61 ± 0.55 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A novel, precise, sensitive and accurate ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the simultaneous determination of a novel drug combination, candesartan (CAN) and chlorthalidone (CHL), in human plasma. Chromatographic separation was achieved on Waters Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm). Mobile phase consisting of 1 mm ammonium acetate in water–acetonitrile (20:80 v /v) was used. The total chromatographic runtime was 1.9 min with retention times for CAN and CHL at 0.7 and 1.1 min respectively. Ionization and detection of analytes and internal standards was performed on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and negative ionization mode. Quantitation was done to monitor protonated precursor → product ion transition of m /z 439.2 → 309.0 for CAN, 337.0 → 189.8 for CHL and 443.2 → 312.1 for candesartan D4 and 341.0 → 189.8 for chlorthalidone D4. The method was validated over a wide dynamic concentration range of 2.0–540.0 ng/mL for candesartan and 1.0–180.0 ng/mL for chlorthalidone. The validated method was successfully applied for the assay of CAN and CHL in healthy volunteers.  相似文献   

15.
A sensitive rapid analytical method was established and validated to determine the bakkenolide A (BA) in rat plasma. This method was further applied to assess the pharmacokinetics of BA in rats receiving a single dose of BA. Liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode was used in the method, and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The combination of a simple sample cleanup and short chromatographic running time (2.4 min) increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for BA in plasma. Intra‐ and inter‐day accuracies for BA were 93–112% and 103–104%, respectively, and the inter‐day precision was less than 15%. After a single oral dose of 20 mg/kg of BA, the mean peak plasma concentration (Cmax) of BA was 234.7 ± 161 ng/mL at 0.25 h. The area under the plasma concentration–time curve (AUC0–24 h) was 535.8 ± 223.7 h·ng/mL, and the elimination half‐life (T1/2) was 5.0 ± 0.36 h. In case of intravenous administration of BA at a dosage of 2 mg/kg, the area under the plasma concentration–time curve (AUC0–24 h) was 342 ± 98 h?ng/mL, and the elimination half‐life (T1/2) was 5.8 ± 0.7 h. Based on the results, the oral bioavailability of BA in rats at 20 mg/kg is 15.7%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
An HPLC‐MS/MS method has been developed and validated for the determination of venlafaxine enantiomers in human plasma and applied to a pharmacokinetic study in healthy Chinese volunteers. The method was carried out on a vancomycin chiral column (5 µm, 250 × 4.6 mm) maintained at 25°C. The mobile phase was methanol–water containing 30 mmol/L ammonium acetate, pH 3.3 adjusted with aqueous ammonia (8:92, v/v) at the flow rate 1.0 mL/min. A tandem mass spectrometer with an electrospray interface was operated in the multiple reaction monitoring mode to detect the selected ions pair at m/z 278.0 → 120.8 for venlafaxine enantiomers and m/z 294.8 → 266.7 for estazolanm (internal standard). The method was linear in the concentration range of 0.28–423.0 ng/mL. The lower limit of quantification was 0.28 ng/mL. The intra‐and inter‐day relative standard deviations were less than 9.7%. The method was successfully applied for the evaluation of pharmacokinetic profiles of venlafaxine enantiomers in 18 healthy volnteers. Validation parameters such as the specificity, linearity, precision, accuracy and stability were evaluated, giving results within the acceptable range. Pharmacokinetic parameters of the venlafaxine enantiomers were measured in the 18 healthy Chinese volunteers who received a single regimen with venlafaxine hydrochloride capsules. The results show that AUC(0–∞), Cmax and t1/2 between S‐venlafaxine and R‐venlafaxine are significantly different (p < 0.05). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and rapid LC–MS/MS method was developed and validated for quantitation of sciadopitysin in rat plasma using amentoflavone as an internal standard. Sample processing was accomplished after deproteinization with 150 μL aliquot of acetonitrile. Chromatographic separation was achieved using an Agela C18 column with an isocratic mobile phase comprising 2 mm ammonium acetate–acetonitrile (35:65, v/v) at a flow rate of 0.4 mL/min. Detection was performed by selection reaction monitoring on a triple‐quadrupole mass spectrometer following the transitions m/z 579 → 547 and 537 → 375 for sciadopitysin and internal standard, respectively, in the negative ionization mode. The calibration curve was linear from 2.90 to 1160 ng/mL for sciadopitysin. Intra‐ and inter‐day precisions were in the ranges 4.1–11.4 and 5.7–9.1% for sciadopitysin. Sciadopitysin was stable under different stability conditions. The validated assay was applied to pharmacokinetic and bioavailability studies in rats.  相似文献   

18.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

19.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A novel, sensitive and rapid ultra‐performance liquid chromatography–tandem mass spectrometric method for the quantification of chikusetsusaponin IVa (CHS‐IVa) in rat plasma was established and validated. Plasma samples were pre‐treated by precipitation of protein with acetonitrile and chromatographed on a Waters Symmetry C18 analytical column (4.6 × 50 mm, i.d., 3.5 μm) using a mobile phase consisting of methanol and water containing 0.05% formic acid (55:45, v/v) at a flow rate of 0.4 mL/min. The deprotonated molecular ions [M ? H] were employed in electrospray negative ionization mode and selected reaction monitoring transitions were performed for detection. The calibration curves exhibited good linearity (r > 0.99) over the range of 0.5–1000 ng/mL for CHS‐IVa. The recoveries of CHS‐IVa were >92.5% and exhibited no severe matrix effect. This method was successfully applied in the pharmacokinetic study of CHS‐IVa in rats. For oral administration, the plasma concentrations of CHS‐IVa increased to a peak value at 0.35 ± 0.14 h, followed by a gradual decrease to the lower limit of quantitation in 24 h. For intravenous administration, the plasma concentrations of CHS‐IVa decreased quickly (t1/2, 1.59 ± 0.25 h). The absolute bioavailability of CHS‐IVa in rats was 8.63%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号