首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was employed to extract and purify wedelolactone and isodemethylwedelolactone from Ecliptae Herba. The operating conditions of ultra‐high‐pressure extraction were optimized using an orthogonal experimental design. The optimal conditions were 80% aqueous methanol solvent, 200 MPa pressure, 3 min extraction time and 1:20 (g/mL) solid–liquid ratio for extraction of wedelolactone and isodemethylwedelolactone. After extraction by ultra‐high pressure, the extraction solution was concentrated and subsequently extracted with ethyl acetate; a total of 2.1 g of crude sample was obtained from 100 g of Ecliptae Herba. A two‐phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (3:7:5:5, v/v) was used for high‐speed counter‐current chromatography separation, by which 23.5 mg wedelolactone, 6.8 mg isodemethylwedelolactone and 5.5 mg luteolin with purities >95% were purified from 300 mg crude sample in a one‐step separation. This research demonstrated that ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was an efficient technique for the extraction and purification of coumestans from plant material.  相似文献   

2.
A novel aptamer‐modified magnetic mesoporous carbon was prepared to develop a specific and sensitive magnetic solid‐phase extraction method through combination with ultra‐high performance liquid chromatography‐tandem mass spectrometry for the analysis chloramphenicol in complex samples. More specifically, the chloramphenicol aptamer‐modified Mg/Al layered double hydroxide magnetic mesoporous carbon was employed as a novel magnetic solid‐phase extraction sorbent for analyte enrichment and sample clean‐up. The extraction solvent, extraction time, desorption solvent, and desorption time were investigated. It was found that the mesoporous structure and aptamer‐based affinity interactions resulted in acceptable selective recognition and a good chemical stability toward trace amounts of chloramphenicol. Upon combination with the ultra‐high performance liquid chromatography‐tandem mass spectrometry technique, a specific and sensitive recognition method was developed with a low limit of detection (0.94 pmol/L, S/N = 3) for chloramphenicol analysis. The developed method was successfully employed for the determination of chloramphenicol in complex serum, milk powders, fish and chicken samples, giving recoveries of 87.0‐107% with relative standard deviations of 3.1‐9.7%.  相似文献   

3.
In this work, various types of metal‐organic frameworks were synthesized, and their affinities toward buprenorphine were evaluated using dispersive solid‐phase extraction. The extracted buprenorphine was determined by ultra high performance liquid chromatography‐ultraviolet detection system. The highest extraction recovery was observed by employing zeolitic imidazole framework‐67. Then, a facile and fast extraction method was designed for the extraction and purification of the target drug. Optimization of the extraction method was carried out by the design of experiment approach. A linearity range of 1–1000 μg/L with the limit of detection of 0.15 μg/L and relative standard deviations (50 μg/L, n = 5) of 3.4% was obtained for standard sample analysis. Under optimized experimental and instrumental conditions, the relative recoveries were in the range of 95 to 111%. Eventually, zeolitic imidazole framework‐67 was successfully employed for the extraction and determination of buprenorphine in the biological fluids with satisfactory results.  相似文献   

4.
Time–concentration curves for the topical anti‐viral drug acyclovir can provide valuable information for drug development. Open flow microperfusion is used for continuous sampling of dermal interstitial fluid but it requires validated methods for subsequent sample analysis. Therefore, we developed a sensitive, selective and high‐throughput ultra‐high‐performance liquid chromatography–high‐resolution tandem mass spectrometry method to determine acyclovir in human dermal interstitial fluid and serum. We validated the method over a concentration range of 0.1–25 ng/mL for a sample volume of just 20 μL and employed cation‐exchange solid‐phase extraction in a fully automated sample treatment procedure. Short‐ and long‐term sample stability data and the analysis of 5000 samples from a clinical trial demonstrate the successful application of our method.  相似文献   

5.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

6.
Steroid hormones play a critical role in maintaining the homeostasis of human metabolism. Urine as a noninvasive sample has been extensively used in clinical diagnosis for hormones homeostasis. In this study, the simultaneous characterization of fourteen hormones in urine was performed based on ultra‐high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPHLC/ESI(+)‐MS/MS) with multiple reaction monitoring in the positive ionization mode. The target hormones were cortisone, cortisol, 11‐deoxycortisol, aldosterone, corticosterone, 11‐deoxycorticosterone, progesterone, 17‐OH‐progesterone, pregnenolone, estrone, estradiol, estriol, testosterone and dehydreopiandrosterone. β‐Glucuronidase/sulfatase deconjugation and liquid–liquid extraction (LLE) were conducted for the determination of urinary hormones (free + conjugated forms). The limits of detection (LODs) ranged from 0.2 ng/mL (11‐deoxycortisol and testosterone) to 1 ng/mL (cortisone). The extraction recovery of the targeted compounds ranged from 87% to 127%, indicating sufficient extraction efficiency for the LLE process. Intraday precision was below 10% and the accuracy ranged from 84% to 122%. The profiling analysis of hormones in urine samples helps to understand the metabolic state of biological systems and can be employed as a diagnostic tool in diseases developed by endocrine‐disrupted systems.  相似文献   

7.
An automatic on‐line solid‐phase extraction with ultra‐high performance liquid chromatography and tandem mass spectrometry method was developed for the simultaneous determination of ten antipsychotics in human plasma. The plasma sample after filtration was injected directly into the system without any pretreatment. A Shim‐pack MAYI‐C8 (G) column was used as a solid‐phase extraction column, and all the analytes were separated on a Shim‐pack XR‐ODS III column with a mobile phase consisting of 0.1% v/v formic acid in water with 5 mM ammonium acetate and acetonitrile. The method features were systematically investigated, including extraction conditions, desorption conditions, the equilibration solution, the valve switching time, and the dilution for column‐head stacking. Under the optimized conditions, the whole analysis procedure took only 10 min. The limits of quantitation were in the range of 0.00321–2.75 μg/L and the recoveries ranged from 75.9 to 122%. Compared with the off‐line ultra‐high performance liquid chromatography and the reported methods, this validated on‐line method showed significant advantages such as minimal pretreatment, shortest analysis time, and highest sensitivity. The results indicated that this automatic on‐line method was rapid, sensitive, and reliable for the determination of antipsychotics in plasma and could be extended to other target analytes in biological samples.  相似文献   

8.
An industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with response surface methodology was explored to determine L‐epicatechin, typhaneoside, isorhamnetin‐3‐O‐neohespeidoside, naringenin, kaempferol, and isorhamnetin in Pollen typhae by ultra‐high performance liquid chromatography connected to a photodiode array detection. Several variables were optimized in detail, including mesh number of sieve, type of adsorbent, mass ratio of sample to adsorbent, grinding time, methanol concentration, and elution volume. Central composite design was applied to optimize the best conditions for the maximum yields of the total flavonoids. The results displayed a good linear relationship (R > 0.9992) and the recoveries ranged from 92.9 to 103% (RSD < 4.53%) of the six flavonoids. The optimal method with high efficiency and low consumption was obviously better than heating reflux and ultrasonic extraction. It was proven that the developed industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with simple ultra‐high performance liquid chromatography method could be a rapid and efficient tool for extraction and determination of flavonoids in natural products.  相似文献   

9.
Lysozomal storage disorders are just beginning to be routinely screened using enzyme activity assays involving dried blood spots and tandem mass spectrometry (MS/MS). This paper discusses some of the analytical challenges associated with published assays including complex sample preparation and potential interference from excess residual substrate. Solutions to these challenges are presented in the form of on‐line two‐dimensional chromatography to eliminate off‐line liquid‐liquid extraction (LLE) and solid‐phase extraction (SPE), the use of ultra‐high‐performance liquid chromatography (UHPLC) to separate excess substrate from all other analytes and multiplexed sample introduction for higher throughput required of a population screening assay. High sensitivity, specificity and throughput were demonstrated using this novel method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

11.
A modified quick, easy, cheap, effective, rugged and safe method was established for simultaneous determination of atropine, anisodamine, and scopolamine in goji berries by using ultra‐high‐performance liquid chromatography with tandem mass spectrometry. The graphene/hexagonal boron nitride hybrids were prepared and first applied as a cleanup adsorbent. Compared to classical cleanup adsorbent (C18), the graphene/hexagonal boron nitride hybrids as adsorbent had better extraction efficiency for the detection of analytes. Under the optimal conditions, the proposed analytical method achieved satisfactory linearity (R> 0.995), and obtained desirable recoveries ranged from 77.4 to 94.0% with the relative standard deviation of 1.2–6.1% at the concentration levels of 3.2–13.4 µg/kg. The limits of quantitation of atropine, anisodamine, and scopolamine were, respectively, 3.2, 4.6, and 4.5 µg/kg with linearity ranged from 3.2 to 25.4 µg/kg. The modified quick, easy, cheap, effective, rugged, and safe sample preparation with ultra‐high‐performance liquid chromatography and tandem mass spectrometry method was successfully applied to evaluate the safety of goji berries collected from 30 plant areas in China, suggesting its applicability and suitability for the routine analysis of three tropane alkaloids in goji berries.  相似文献   

12.
Dexmedetomidine (Dex), a highly selective α2‐adrenergic agonist, is used primarily for the sedation and anxiolysis of adults and children in the intensive care setting. A sensitive and selective assay for Dex in pediatric plasma was developed by employing ultra‐high‐performance liquid chromatography–tandem mass spectrometry with d4‐Dex as an internal standard. Dex was extracted from 0.1 mL of plasma by micro‐elution solid‐phase extraction. Separation was achieved with a Waters XBridge C18 column with a flow rate of 0.3 mL/min using a mobile phase comprising 5 mm ammonium acetate buffer with 0.03% formic acid in water and methanol–acetonitrile (50:50, v/v). The intra‐day precision (coefficient of variation) and accuracy for quality control samples ranged from 1.32 to 8.91% and from 92.8 to 108%, respectively. The inter‐day precision and accuracy ranged from 2.13 to 8.45% and from 97.0 to 104%, respectively. The analytical method showed excellent sensitivity using a small sample volume (0.1 mL) with a lower limit of quantitation of 5 pg/mL. This method is robust and has been successfully employed in a pharmacokinetic study of Dex in neonates and infants postoperative from cardiac surgery.  相似文献   

13.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Surfactant‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection has been developed for the simultaneous preconcentration and determination of lorazepam and nitrazepam in biological fluids. In this study, an ionic surfactant (cetyltrimethyl ammonium bromide) was used as an emulsifier. The predominant parameters affecting extraction efficiency such as the type and volume of extraction solvent, the type and concentration of surfactant, sample pH, and the concentration of salt added to the sample were investigated and opted. Under the optimum conditions (extraction solvent and its volume, 1‐octanol, 70 μL; surfactant and its concentration, 1 mL of ultra‐pure water containing 2 mmol L?1 cetyltrimethyl ammonium bromide; sample pH = 9 and salt content of 10% NaCl w/v), the preconcentration factors were obtained in the range of 202–241 and 246–265 for nitrazepam and lorazepam, respectively. The limits of quantification for both drugs were 5 μg L?1 in water sample and 10 μg L?1 in biological fluids with R2 values higher than 0.993. The suitability of the proposed method was successfully confirmed by the extraction and determination of the target drugs in human urine and plasma samples in the range of microgram per liter.  相似文献   

15.
To free analytical resources for new classes of doping substances, such as banned proteins, maximization of the number of compounds that can be determined with high sensitivity in a single run is highly urgent. This study demonstrates an application of ‘wrong‐way‐round ionization’ for the simultaneous detection of multiple classes of doping substances without the need to switch the polarity. A screening method for the detection of 137 compounds from various classes of prohibited substances (stimulants, diuretics, β2‐agonists, β‐blockers, antiestrogens, glucocorticosteroids and anabolic agents) has been developed. The method involves an enzymatic hydrolysis, liquid–liquid extraction and detection by liquid chromatography/orbitrap mass spectrometry with wrong‐way‐round ionization. Up to 64% of compounds had a 10‐fold lower limit of detection (LOD) than the minimum required performance limit. To compare the efficiency of conventional ionization relative to wrong‐way‐round ionization of doping substances in + ESI, a fortified blank urine sample at the minimum required performance limit was analyzed using two ESI approaches. All compounds were detected with markedly better S/N in a high‐pH mobile phase, with the exception of acetazolamide (minimal change in S/N, < 20%).The method was validated by spiking 10 different blank urine samples at five different concentrations. Validation parameters included the LOD, selectivity, ion suppression, extraction recovery and repeatability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and green sodium dodecyl sulfate‐synergistic microwave‐assisted extraction method was developed to extract and determine the iridoids, phenylpropanoids, and lignans in Eucommiae Cortex followed by ultra‐high‐performance liquid chromatography with photodiode array detection. The biodegradable solution (sodium dodecyl sulfate) was used as a promising alternative to organic solvents. The response surface methodology provided the optimum extraction conditions (2 mg/mL sodium dodecyl sulfate, 1100 W microwave power, and 6 min extraction time). The recoveries of three types of components ranged from 95.0 to 105% (RSDs < 5%). The intra‐ and inter‐day precision and accuracy were less than 3.40% and within the range of 97.1‐105%, respectively. Compared with other extraction methods, this newly established method was more efficient and environmental friendly. The results demonstrated that sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method was applicable for the simultaneous extraction and determination of these three types of compounds for quality evaluation of Eucommiae Cortex.  相似文献   

17.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

18.
A dispersive liquid–liquid micellar microextraction (DLLMME) method coupled with ultra‐high‐performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid‐phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47‐fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We established a method for the separation and detection of nine hydroxylated polychlorinated biphenyls in whole blood and urine samples using ultra high performance liquid chromatography coupled with electrospray negative ionization tandem mass spectrometry. Clean‐up procedures involved a filtration step, and optimization involved a pretreatment step consisting of a simple liquid–liquid extraction using hydrated silica‐gel chromatography (5%). Nine hydroxylated polychlorinated biphenyls were separated on an ultra high performance liquid chromatography HSS T3 column using a gradient elution program of 2 mmol ammonium formate aqueous solution (A) and methanol (B). Recovery ranged from 84.0 to 105.4% for the nine different hydroxylated polychlorinated biphenyls in urine with three spiked levels of 0.1, 1, and 2 ng and from 73.5 to 98.6% for the blood with spiked levels of 0.2, 1, and 2 ng. The relative standard deviations were <8.7% (n = 6), and the limits of detection in urine and whole blood for the nine hydroxylated polychlorinated biphenyls were in the range of 1.5–4 and 20–100 pg/g, respectively. This analytical method may enable the simultaneous detection of various hydroxylated polychlorinated biphenyls from complex tissue matrices.  相似文献   

20.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号