首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present an integrated approach for investigating the topology of proteins through native mass spectrometry (MS) and cross‐linking/MS, which we applied to the full‐length wild‐type p53 tetramer. For the first time, the two techniques were combined in one workflow to obtain not only structural insight in the p53 tetramer, but also information on the cross‐linking efficiency and the impact of cross‐linker modification on the conformation of an intrinsically disordered protein (IDP). P53 cross‐linking was monitored by native MS and as such, our strategy serves as a quality control for different cross‐linking reagents. Our approach can be applied to the structural investigation of various protein systems, including IDPs and large protein assemblies, which are challenging to study by the conventional methods used for protein structure characterization.  相似文献   

2.
Chemical cross‐linking combined with a subsequent enzymatic digestion and mass spectrometric analysis of the created cross‐linked products presents an alternative approach to assess low‐resolution protein structures. By covalently connecting pairs of functional groups within a protein or a protein complex a set of structurally defined interactions is built up. We synthesized the heterobifunctional amine‐reactive photo‐cross‐linker N‐succinimidyl p‐benzoyldihydrocinnamate as a non‐deuterated (SBC) and doubly deuterated derivative (SBDC). Applying a 1:1 mixture of SBC and SBDC for cross‐linking experiments aided the identification of cross‐linked amino acids in the mass spectra based on the characteristic isotope patterns of fragment ions. The cross‐linker was applied to the calcium‐binding protein calmodulin with a subsequent analysis of cross‐linked products by nano‐high‐performance liquid chromatography matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry (nano‐HPLC/MALDI‐TOF/TOF‐MS) and nano‐HPLC/nano‐electrospray ionization (ESI)‐LTQ‐Orbitrap‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Chemical cross‐linking combined with mass spectrometry (XL‐MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross‐linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross‐linkers containing an MS‐labile urea group, we now present the biuret‐based, CID‐MS/MS‐cleavable cross‐linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross‐linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.  相似文献   

4.
Chemical cross‐linking combined with a subsequent enzymatic digestion and mass spectrometric analysis of the created cross‐linked products presents an alternative approach to assess low‐resolution protein structures and to gain insight into protein interfaces. In this contribution, we report the design of an innovative cross‐linker based on Edman degradation chemistry, which leads to the formation of indicative mass shifted fragment ions and constant neutral losses (CNLs) in electrospray ionization (ESI)‐tandem‐mass spectrometry (MS/MS) product ion mass spectra, allowing an unambiguous identification of cross‐linked peptides. Moreover, the characteristic neutral loss reactions facilitate automated analysis by multiple reaction monitoring suited for high throughput studies with good sensitivity and selectivity. The functioning of the novel cross‐linker relies on the presence of a highly nucleophilic sulfur in a thiourea moiety, safeguarding for effective intramolecular attack leading to predictive and preferred cleavage of a glycyl‐prolyl amide bond. Our innovative analytical concept and the versatile applicability of the collision‐induced dissociative chemical cross‐linking reagent are exemplified for substance P, luteinizing hormone releasing hormone LHRH and lysozyme. The novel cross‐linker is expected to have a broad range of applications for probing protein tertiary structures and for investigating protein–protein interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Chemical cross‐linking combined with mass spectrometry (MS) has been used to elucidate protein structures and protein‐protein interactions. However, heterogeneity of the samples and the relatively low abundance of cross‐linked peptides make this approach challenging. As an effort to overcome this hurdle, we have synthesized lysine‐reactive homobifunctional cross‐linkers with the biotin in the middle of the linker and used them to enrich cross‐linked peptides. The reaction of biotin‐tagged cross‐linkers with purified HIV‐1 CA resulted in the formation of hanging and intramolecular cross‐links. The peptides modified with biotinylated cross‐linkers were effectively enriched and recovered using a streptavidin‐coated plate and MS‐friendly buffers. The enrichment of modified peptides and removal of the dominantly unmodified peptides simplify mass spectra and their analyses. The combination of the high mass accuracy of Fourier transform ion cyclotron resonance (FT‐ICR) MS and the tandem mass spectrometric (MS/MS) capability of the linear ion trap allows us to unambiguously identify the cross‐linking sites and additional modification, such as oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The use of mass spectrometry coupled with chemical cross‐linking of proteins has become one of the most useful tools for proteins structure and interactions studies. One of the challenges in these studies is the identification of the cross‐linked peptides. The interpretation of the MS/MS data generated in cross‐linking experiments using N‐hydroxy succinimide esters is not trivial once a new amide bond is formed allowing new fragmentation pathways, unlike linear peptides. Intermolecular cross‐linked peptides occur when two different peptides are connected by the cross‐linker and they yield information on the spatial proximity of different domains (within a protein) or proteins (within a complex). In this article, we report a detailed fragmentation study of intermolecular cross‐linked peptides, generated from a set of synthetic peptides, using both ESI and MALDI to generate the precursor ions. The fragmentation features observed here can be helpful in the interpretation and identification of cross‐linked peptides present in cross‐linking experiments and be further implemented in search engine's algorithms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The fragmentation behavior of a novel thiourea‐based cross‐linker molecule specifically designed for collision‐induced dissociation (CID) MS/MS experiments is described. The development of this cross‐linker is part of our ongoing efforts to synthesize novel reagents, which create either characteristic fragment ions or indicative constant neutral losses (CNLs) during tandem mass spectrometry allowing a selective and sensitive analysis of cross‐linked products. The new derivatizing reagent for chemical cross‐linking solely contains a thiourea moiety that is flanked by two amine‐reactive N‐hydroxy succinimide (NHS) ester moieties for reaction with lysines or free N‐termini in proteins. The new reagent offers simple synthetic access and easy structural variation of either length or functionalities at both ends. The thiourea moiety exhibits specifically tailored CID fragmentation capabilities—a characteristic CNL of 85 u—ensuring a reliable detection of derivatized peptides by both electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization (MALDI) tandem mass spectrometry and as such possesses a versatile applicability for chemical cross‐linking studies. A detailed examination of the CID behavior of the presented thiourea‐based reagent reveals that slight structural variations of the reagent will be necessary to ensure its comprehensive and efficient application for chemical cross‐linking of proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Chemical cross‐linking, combined with mass spectrometry, has been applied to map three‐dimensional protein structures and protein–protein interactions. Proper choice of the cross‐linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross‐linkers with proteins are quite sparse. In this study, we investigated chemical cross‐linking from the aspects of the protein structures and the cross‐linking reagents involved, by using two structurally well‐known proteins, glyceraldehyde 3‐phosohate dehydrogenase and ribonuclease S. Chemical cross‐linking reactivity was compared using a series of homo‐ and hetero‐bifunctional cross‐linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m‐maleimidobenzoyl‐N‐hydroxysulfosuccinimide ester, 2‐pyridyldithiol‐tetraoxaoctatriacontane‐N‐hydrosuccinimide and succinimidyl‐[(N‐maleimidopropionamido)‐tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross‐linking efficiency. Moreover, the reactive groups of the chemical cross‐linker also play an important role; a higher cross‐linking reaction efficiency was found for maleimides compared to 2‐pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N‐hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The Escherichia coli single‐stranded DNA binding protein (SSB) selectively binds single‐stranded (ss) DNA and participates in the process of DNA replication, recombination and repair. Different binding modes have previously been observed in SSB?ssDNA complexes, due to the four potential binding sites of SSB. Here, chemical cross‐linking, combined with high‐mass matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), is used to determine the stoichiometry of the SSB?ssDNA complex. SSB forms a stable homotetramer in solution, but only the monomeric species (m/z 19 100) can be detected with standard MALDI‐MS. With chemical cross‐linking, the quaternary structure of SSB is conserved, and the tetramer (m/z 79 500) was observed. We found that ssDNA also functions as a stabilizer to conserve the quaternary structure of SSB, as evidenced by the detection of a SSB?ssDNA complex at m/z 94 200 even in the absence of chemical cross‐linking. The stability of the SSB?ssDNA complex with MALDI strongly depends on the length and strand of oligonucleotides and the stoichiometry of the SSB?ssDNA complex, which could be attributed to electrostatic interactions that are enhanced in the gas phase. The key factor affecting the stoichiometry of the SSB?ssDNA complex is how ssDNA binds to SSB, rather than the protein‐to‐DNA ratio. This further suggests that detection of the complex by MALDI is a result of specific binding, and not due to non‐specific aggregation in the MALDI plume. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Chemical cross‐linking combined with MALDI ‐MS was applied to structural analysis of a protein nanocontainer. Specifically, an engineered variant of lumazine synthase from Aquifex aeolicus (AaLS ‐13) was investigated that self‐assembles into a capsid‐like structure and is known to encapsulate other proteins by Coulombic attraction. Two complementary soft ionization techniques, MALDI ‐MS and native ESI ‐MS , were utilized to map the subunit stoichiometry of the high molecular weight capsid. In accordance with the previously reported cryo‐electron microscopy structure of this protein container, only pentameric subunits were detected. This study highlights the possibility to map subunit stoichiometry via chemical cross‐linking with glutaraldehyde followed by MALDI ‐MS . The same approach was used to study protein‐protein interactions during encapsulation of GFP (+36) by the AaLS ‐13 capsid. Heterocomplexes between GFP (+36) and AaLS ‐13 multimers were not observed when mixed at maximal loading capacity (AalS‐13 monomer:GFP (+36) 4:1). This is in agreement with the known fast encapsulation of GFP (+36) by the protein capsid, which essentially removes any free GFP (+36) from the solution. Exceeding the maximal loading capacity by addition of excess GFP (+36) results in aggregation.  相似文献   

11.
Structure elucidation of tertiary or quaternary protein structures by chemical cross‐linking and mass spectrometry (MS) has recently gained importance. To locate the cross‐linker modification, dedicated software is applied to analyze the mass or tandem mass spectra (MS/MS). Such software requires information on target amino acids to limit the data analysis time. The most commonly used homobifunctional N‐hydroxy succinimide (NHS) esters are often described as reactive exclusively towards primary amines, although side reactions with tyrosine and serine have been reported. Our goal was to systematically study the reactivity of NHS esters and derive some general rules for their attack of nucleophilic amino acid side chains in peptides. We therefore studied the cross‐linking reactions of synthesized and commercial model peptides with disuccinimidyl suberate (DSS). The first reaction site in all cases was expectedly the α‐NH2‐group of the N‐terminus or the ε‐NH2‐group of lysine. As soon as additional cross‐linkers were attached or loops were formed, other amino acids were also involved in the reaction. In addition to the primary amino groups, serine, threonine and tyrosine showed significant reactivity due to the effect of neighboring amino acids by intermediate or permanent Type‐1 cross‐link formation. The reactivity is highly dependent on the pH and on adjacent amino acids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A new G‐quadruplex (G‐4)‐directing alkylating agent BMVC‐C3M was designed and synthesized to integrate 3,6‐bis(1‐methyl‐4‐vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G‐4 structures (hybrid‐2 type and antiparallel) and an oncogene promoter, c‐MYC (parallel), were constructed to react with BMVC‐C3M, yielding 35 % alkylation yield toward G‐4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI‐MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross‐linking sites were determined and found to be dependent on G‐4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC‐C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c‐MYC), respectively, as monoalkylated adducts and formed A15–C3M–A21 (H26), G12–C3M–G4 (H24), and G2–C3M–G4/G17 (c‐MYC), respectively, as cross‐linked dialkylated adducts. Collectively, the stability and site‐selective cross‐linking capacity of BMVC‐C3M provides a credible tool for the structural and functional characterization of G‐4 DNAs in biological systems.  相似文献   

13.
Structural proteomics refers to large‐scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass‐spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high‐order structure. Fluorine, well‐known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine‐containing reagents that can be applied in structural proteomics. We organize their applications around four MS‐based techniques: a) affinity labeling, b) activity‐based protein profiling (ABPP), c) protein footprinting, and d) protein cross‐linking. Our aim is to provide an overview of the research, development, and application of fluorine‐containing reagents in protein structural studies.  相似文献   

14.
Insulin‐like growth factor‐I (IGF‐I) is a known biomarker of recombinant human growth hormone (rhGH) abuse, and is also used clinically to confirm acromegaly. The protein leucine‐rich α‐2‐glycoprotein (LRG) was recently identified as a putative biomarker of rhGH administration. The combination of an ACN depletion method and a 5‐min ultra‐high‐performance liquid chromatography/tandem mass spectrometry (uHPLC/MS/MS)‐based selected reaction monitoring (SRM) assay detected both IGF‐I and LRG at endogenous concentrations. Four eight‐point standard addition curves of IGF‐I (16–2000 ng/mL) demonstrated good linearity (r2 = 0.9991 and coefficients of variance (CVs) <13%). Serum samples from two rhGH administrations were extracted and their uHPLC/MS/MS‐derived IGF‐I concentrations correlated well against immunochemistry‐derived values. Combining IGF‐I and LRG data improved the separation of treated and placebo states compared with IGF‐I alone, further strengthening the hypothesis that LRG is a biomarker of rhGH administration. Artificial neural networks (ANNs) analysis of the LRG and IGF‐I data demonstrated an improved model over that developed using IGF‐I alone, with a predictive accuracy of 97%, specificity of 96% and sensitivity of 100%. Receiver operator characteristic (ROC) analysis gave an AUC value of 0.98. This study demonstrates the first large scale and high throughput uHPLC/MS/MS‐based quantitation of a medium abundance protein (IGF‐I) in human serum. Furthermore, the data we have presented for the quantitative analysis of IGF‐I suggest that, in this case, monitoring a single SRM transition to a trypsin peptide surrogate is a valid approach to protein quantitation by LC/MS/MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple porogen containing only DMF and aqueous buffer was used for synthesis of monolithic stationary media for CEC). Butyl methacrylate (BMA)‐based capillary monoliths were obtained using proposed porogen together with acrylic/methacrylic cross‐linking agents with different alkyl chain lengths. For this purpose, ethylene glycol dimethacrylate, butanediol dimethacrylate and hexanediol diacrylate (HDDA) were used. The monoliths with better electrochromatographic separation performance were obtained when the acrylic cross‐linking agent with the longest alkyl chain length (i.e. HDDA) was used with the proposed porogen. The electrochromatographic separation of alkylbenzenes, phenols and benzoic acids were sucessfully performed in CEC particularly using poly(BMA‐co‐HDDA) monolithic stationary phase with the column efficiency up to 270 000 plates/m.  相似文献   

16.
In this work, m‐phenylenediamine (MPD) is used to prepare cross‐linked polyetherimide (PEI)‐based nanofiltration (NF) membrane for treatment of dye containing wastewater. The effects of dope solution composition, cross‐linking time, and dye concentration on membrane performance are investigated. Results indicate that the rejection of dye is increased with the increase of acetone concentration in the dope solution, cross‐linking time, and dye concentration. Meanwhile, membrane flux showed the opposite trend. With the aid of SEM and FTIR analysis, the cross‐linking between MPD and PEI is confirmed. The cross‐linked membrane has thicker and dense selective layer compared to the unmodified membrane. The cross‐linked NF membrane (PEI: 15 wt%; acetone: 20 wt%; cross‐linking time: 10 minutes) showed good performance in filtration of synthetic dye wastewater (Reactive Red 120, 1500 ppm) with 98% dye rejection and 0.013 L m?2 hour?1 of flux at relatively low operating pressure (60 psi).  相似文献   

17.
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three‐dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X‐ray crystallography. Structural MS unites different MS‐based techniques, such as hydrogen/deuterium exchange, native MS, ion‐mobility MS, protein footprinting, and chemical cross‐linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross‐linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross‐linking/MS is currently one of the most promising MS‐based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins.  相似文献   

18.
Bacteriophage (phage) proteins have been analyzed previously with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). However, analysis of phage major capsid proteins (MCPs) has been limited by the ability to reproducibly generate ions from MCP monomers. While the acidic conditions of MALDI‐TOF MS sample preparation have been shown to aid in disassembly of some phage capsids, many require further treatment to successfully liberate MCP monomers. The findings presented here suggest that β‐mercaptoethanol reduction of the disulfide bonds linking phage MCPs prior to mass spectrometric analysis results in significantly increased MALDI‐TOF MS sensitivity and reproducibility of Yersinia pestis‐specific phage protein profiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Crystallography and nuclear magnetic resonance are well‐established methods to study protein tertiary structure and interactions. Despite their usefulness, such methods are not applicable to many protein systems. Chemical cross‐linking of proteins coupled with mass spectrometry allows low‐resolution characterization of proteins and protein complexes based on measuring distance constraints from cross‐links. In this work, we have investigated cross‐linking by means of a heterobifunctional cross‐linker containing a traditional N‐hydroxysuccinimide (NHS) ester and a UV photoactivatable diazirine group. Activation of the diazirine group yields a highly reactive carbene species, with potential to increase the number of cross‐links compared with homobifunctional, NHS‐based cross‐linkers. Cross‐linking reactions were performed on model systems such as synthetic peptides and equine myoglobin. After reduction of the disulfide bond, the formation of intra‐ and intermolecular cross‐links was identified and the peptides modified with both NHS and diazirine moieties characterized. Fragmentation of these modified peptides reveals the presence of a marker ion for intramolecular cross‐links, which facilitates identification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(1):603-611
A novel halogen‐free 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐containing co‐curing agent, 6,6′‐(1,4‐phenylenebis(((4‐(phenylamino)phenyl)amino)methylene))bis(dibenzo[c,e][1,2]oxaphosphinine 6‐oxide) (DPN) was synthesized via a simple 1‐pot or 2‐step procedure with yield of 86.2% and 70.8%, respectively. The molecular structures of 4,4′‐((1,4‐phenylenebis(methanylylidene))bis(azanylylidene))bis(N‐phenylaniline) (DPN intermediate) and DPN are characterized by FTIR, NMR, and MS. TGA tests show that the char yield of DPN/EP composites raises to 30.9% when the molar ratio of DPN to 4,4‐diaminodiphenyl methane(DDM) is 20:80. Tg values of DPN/EP composites tested by DSC and DMA are similar to neat epoxy resin (EP), which is due to the secondary amine in DPN that participates in the cross‐linking reaction of epoxy resin. The storage modulus in the rubber stage (E′‐190 °C) of flame‐retardant epoxy resin is close to that of neat EP, while their tanδ's are lower, which indicates the similarity of samples' cross‐linking density due to the participation of DPN in the cross‐linking reaction. The results show that when the molar ratio of DPN and DDM is 5:95, the epoxy has a higher Tg value and better mechanical properties than other samples. The introduction of DPN efficiently improves the flame‐retardant properties of epoxy resin with V‐0 rating of UL‐94 vertical burning test, non‐dripping, 41% of limit oxygen index (LOI) value, low peak heat release rate (PHRR), and total heat release (THR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号