首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Gelsenicine is an indole alkaloid isolated from Gelsemium elegans Benth. In recent years, the role of G. elegans Benth preparations in anti‐tumor, analgesic, dilatation and dermatological treatment has attracted attention, and it has been applied clinically, but it is easy to cause poisoning with its use. An UPLC–MS/MS method was established to determine the gelsenicine in mouse blood, and the pharmacokinetics of gelsenicine after intravenous (0.1 mg/kg) and intragastric (0.5 and 1 mg/kg) administration was studied. Deltalin was used as internal standard; a UPLC BEH C18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 10 mmol/L ammonium acetate (0.1% formic acid) with a gradient elution flow rate of 0.4 mL/min. Multiple reaction monitoring mode was used for quantitative analysis of gelsenicine in electrospray ionization positive interface. Proteins from mouse blood were removed by acetonitrile precipitation. A validation of this method was performed in accordance with the US Food and Drug Administration guidelines. In the concentration range of 0.05–100 ng/mL, the gelsenicine in the mouse blood was linear (r > 0.995), and the lower limit of quantification was 0.05 ng/mL. In the mouse blood, the intra‐day precision RSD was <12%, the inter‐day precision RSD was <15%, the accuracy ranged from 89.8 to 112.3%, the average recovery was >76.8%, and the matrix effect was between 103.7 and 108.4%, which meet the pharmacokinetic research requirements of gelsenicine. The UPLC–MS/MS method is sensitive, rapid and selective, and has been successfully applied to the pharmacokinetic study of gelsenicine in mice. The absolute bioavailability of gelsenicine is 1.13%.  相似文献   

3.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

4.
A reliable and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed for the determination of zanubrutinib in the plasma of beagle dogs. The column used was an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm), maintained at 40°C with an injection volume of 2 μl. The gradient elution program was as follows: 0–1 min, 10–10% A; 1–1.1 min, 10–90% A; 1.1–2.1 min, 90–90% A; 2.1–2.2 min, 90–10% A; 2.2–3.0 min, 10–10% A. Mobile phase A was 0.1% formic acid, B was acetonitrile, and the total analysis time was 3 min. The mass spectrometry was performed in positive ion mode, and the scanning mode was multi-reaction monitoring mode with electrospray ionization as the ion source; m/z 472.2 → 455.01 for zanubrutinib and m/z 441.03 → 137.99 for ibrutinib (internal standard). The plasma samples were processed by protein precipitation. The standard curve showed good linearity (r2 = 0.999 8) in the range of 1.0–1,000 ng/ml (zanubrutinib) with a low limit of quantification of 1 ng/ml. Also, the intra-day and inter-day precision (RSD) was <5.88% and the accuracy (RE) ranged from −1.56 to 1.08%; the recoveries of zanubrutinib in beagle plasma ranged from 90.12 to 93.53% (RSD 1.67–6.42%) and the ME values of zanubrutinib were 98.70–101.06% (RSD 5.37–8.49%, n = 6). All values meet US Food and Drug Administration requirements. A rapid, highly selective and sensitive method for the determination of zanubrutinib concentration in plasma by UPLC–MS/MS was successfully developed. This method is suitable for pharmacokinetic studies in beagle dogs by following oral administration of zanubrutinib.  相似文献   

5.
The purpose of this study was to develop an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1–1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra‐ and inter‐day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5–113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%.  相似文献   

6.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of luteolin, luteolin‐7‐O β ‐D‐glucopyranoside, physalin A, physalin D and physalin L in rat plasma. Scutellarein and dexamethasone were used as the internal standards (IS). Plasma samples were prepared by liquid‐liquid extraction with ethyl acetate. The five constituents were separated on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm). A gradient elution procedure was used with acetonitrile (A)‐0.1% aqueous formic acid (B). Mass spectrometric detection was performed in negative ion multiple reaction monitoring mode with an electrospray ionization (ESI) source. This method showed good linearity (r 2 > 0.997) over a concentration range of 2.0–500 ng/mL with a lower limit of quantification of 2.0 ng/mL for all five compounds. The inter‐ and intra‐day accuracy ranged from 91.7 to 104%, and precisions (RSD) were <6.46% for all analytes. The extraction recoveries of all analytes were >85%. This validated method was successfully applied for the first time to the pharmacokinetic study of five ingredients after oral administration of 70% ethanol extract of Chinese lantern in rats.  相似文献   

8.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

9.
Humantenmine (HMT), the most toxic compound isolated from Gelsemium elegans Benth , is a well‐known active herbal compound. A rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to estimate the absolute oral bioavailability of HMT in rats. Quantification was performed by multiple reaction monitoring using electrospray ionization operated in positive ion mode with transitions of m/z 327.14 → m/z 296.19 for HMT and m/z 323.20 → m/z 236.23 for gelsemine (internal standard, IS). The linear range of the calibration curve was 1–256 nmol/L, with a lower limit of quantification at 1 nmol/L. The accuracy of HMT ranged from 89.39 to 107.5%, and the precision was within 12.24% (RSD). Excellent recovery and negligible matrix effect were observed. HMT remained stable during storage, preparation and analytical procedures. The pharmacokinetics of HMT in rats showed that HMT reached the concentration peak at 12.50 ± 2.74 min with a peak concentration of 28.49 ± 6.65 nmol/L, and the corresponding area under the concentration–time curve (AUC0–t ) was 1142.42 ± 202.92 nmol/L min after 200 μg/kg HMT was orally administered to rats. The AUC0–t of HMT given at 20 μg/kg by tail vein administration was 1518.46 ± 192.24 nmol/L min. The calculated absolute bioavailability of HMT was 7.66%.  相似文献   

10.
Senkyunolide I is one of the major bioactive components in the herbal medicine Ligusticum chuanxiong. The aim of this study was to develop and validate a fast, simple and sensitive LC‐MS/MS method for the determination of senkyunolide I in dog plasma. The plasma samples were processed with acetonitrile and separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of 0.1% formic acid aqueous and acetonitrile was delivered at a flow rate of 0.3 mL min−1. The detection was achieved in the positive selected reaction monitoring mode with precursor‐to‐product transitions at m/z 225.1 → 161.1 for senkyunolide I and at m/z 349.1 → 305.1 for an internal standard. The assay was linear over the tested concentration range, from 0.5 ng mL−1 to 1000 ng mL−1, with a correlation coefficient >0.9992. The mean extraction recovery from dog plasma was within the range of 85.78–93.25%, while the matrix effect of the analyte was within the range of 98.23–108.89%. The intra‐ and inter‐day precisions (RSD) were <12.12% and the accuracy (RR) ranged from 98.89% to 104.24%. The validated assay was successfully applied to pharmacokinetic and bioavailability studies of senkyunolide I in dogs. The results demonstrated that (a) senkyunolide I showed short elimination half‐life (<1 h) in dog, (b) its oral bioavailability was >40% and (c) senkyunolide I showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 1–50 mg kg−1.  相似文献   

11.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

12.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

13.
A highly sensitive, specific and enantioselective assay has been validated for the quantitation of OTX015 enantiomers [(+)‐OTX015 and (−)‐OTX015] in mice plasma on LC–MS/MS‐electrospray ionization as per regulatory guidelines. Protein precipitation was used to extract (±)‐OTX015 enantiomers and internal standard (IS) from mice plasma. The active [(−)‐OTX015] and inactive [(+)‐OTX015] enantiomers were resolved on a Chiralpak‐IA column using an isocratic mobile phase (0.2% ammonia/acetonitrile 20 : 80, v /v) at a flow rate of 1.2 mL/min. The total run time was 6.0 min. (+)‐OTX015, (−)‐OTX015 and IS eluted at 3.34, 4.08 and 4.77 min, respectively. The MS/MS ion transitions monitored were m/z 492 → 383 for OTX015 and m/z 457 → 401 for IS. The standard curves for OTX015 enantiomers were linear (r 2 > 0.998) in the concentration range 1.03–1030 ng/mL. The inter‐ and intraday precisions were in the range 2.20–13.3 and 8.03–12.1% and 3.80–14.4 and 8.97–13.6% for (+)‐OTX015 and (−)‐OTX015, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (−)‐OTX015 and unequivocally demonstrated that (−)‐OTX015 does not undergo chiral inversion to its antipode in vivo in mice.  相似文献   

14.
A sensitive and specific LC/MS/MS method was developed for the simultaneous analysis of 35 compounds used for treating hypertension as adulterants in dietary supplements. The method was validated for specificity, linearity, accuracy, precision, limit of detection, limit of quantitation, stability and recovery. The limit of detection and limit of quantitation ranged from 0.20 to 20.0 and 0.50 to 60.0 ng/g, respectively. The linearity was good (r 2 > 0.999), with intra‐ and interday precision levels of 0.43–7.87% and 0.65–9.95% and the intra‐ and interday accuracies of 84.36–115.82% and 83.78–118.69%, respectively. The stability (relative standard deviation) was <14.75%. The mean recovery was 80.81–117.86% (relative standard deviation <10.00%). Ninety‐seven commercial dietary supplements available in South Korea were analyzed. While none contained detectable amounts of the 35 antihypertensive compounds, the developed LC/MS/MS procedure can be used for routine analysis to monitor illegal adulteration in various forms of dietary supplements.  相似文献   

15.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of six flavonoid glycosides – isoorientin ( 1 ), orientin ( 2 ), 2″‐O‐β ‐d ‐xylopyranosyl isoorientin ( 3 ), 2″‐O‐β ‐d ‐xylopyranosyl isovitexin ( 4 ), 6‐C‐l ‐α ‐arabipyranosyl vitexin ( 5 ) and vitexin ( 6 ) – in rat plasma using isoquercitrin as the internal standard (IS). Plasma samples were prepared by a one‐step protein precipitation with acetonitrile. Chromatographic analysis was carried out on a 25 cm C18 column with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. Six analytes and IS were detected through electrospray ionization in negative‐ion selection reaction monitoring mode. The mass transitions were as follows: m/z 447.2 → 327.0 for 1 , m/z 447.2 → 327.0 for 2 , m/z 579.3 → 458.9 for 3 , m/z 563.0 → 293.1 for 4 , m/z 563.0 → 353.0 for 5 , m/z 431.1 → 311.1 for 6 , and m/z 463.1 → 300.2 for IS. Calibration curves exhibited good linearity (r 2 > 0.9908) over a wide concentration range for all compounds. Intra‐ and inter‐day precision (RSD, %) at four different levels were both <14.2% and the accuracy (RE, %) ranged from −11.9 to 12.0%. The extraction recoveries of the six components ranged from 88.2 to 103.6%. The validated assay was successfully applied to the pharmacokinetic studies of the six components in male rat plasma after intravenous administration of total flavonoids of Scorzonera austriaca Wild.  相似文献   

16.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A novel, precise, sensitive and accurate ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the simultaneous determination of a novel drug combination, candesartan (CAN) and chlorthalidone (CHL), in human plasma. Chromatographic separation was achieved on Waters Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm). Mobile phase consisting of 1 mm ammonium acetate in water–acetonitrile (20:80 v /v) was used. The total chromatographic runtime was 1.9 min with retention times for CAN and CHL at 0.7 and 1.1 min respectively. Ionization and detection of analytes and internal standards was performed on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and negative ionization mode. Quantitation was done to monitor protonated precursor → product ion transition of m /z 439.2 → 309.0 for CAN, 337.0 → 189.8 for CHL and 443.2 → 312.1 for candesartan D4 and 341.0 → 189.8 for chlorthalidone D4. The method was validated over a wide dynamic concentration range of 2.0–540.0 ng/mL for candesartan and 1.0–180.0 ng/mL for chlorthalidone. The validated method was successfully applied for the assay of CAN and CHL in healthy volunteers.  相似文献   

18.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

19.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Plasma concentrations of nicotine and its active metabolite cotinine are highly correlated with its biological effects. A UHPLC–MS/MS method was developed, validated and applied for nicotine and cotinine analysis in mice plasma. Chromatographic separation was achieved on a BEH HILIC column using acetonitrile (0.1% formic acid) and 10 mm ammonium formate as mobile phase. The gradient elution was performed at 0.4 mL/min with a run time of 3.6 min. The quantitative ion transition was m/z 163.1 > 130.0 for nicotine, m/z 177.1 > 80.0 for cotinine and m/z 167.1 > 134.0 for nicotine‐D4 (internal standard, IS). For both nicotine and cotinine, the calibration range was 5–500 ng/mL with 5 ng/mL as the lower limit of quantitation, and the intra‐ and inter‐day bias and imprecision were ?4.61–12.00% and <11.12%. The IS normalized recovery was 90.62–98.95% for nicotine and 89.18–101.53% for cotinine, and the IS normalized matrix factor was 106.00–116.44% for nicotine and 100.34–109.85% for cotinine. Both nicotine and cotinine were stable under conventional storage conditions. The validated method has been applied to a pharmacokinetic study in mice to calculate the pharmacokinetic parameters for both analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号