首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chemical protein synthesis and biorthogonal modification chemistries allow production of unique proteins for a range of biological studies. Bond‐forming reactions for site‐selective protein labeling are commonly used in these endeavors. Selective bond‐cleavage reactions, however, are much less explored and still pose a great challenge. In addition, most of studies with modified proteins prepared by either total synthesis or semisynthesis have been applied mainly for in vitro experiments with very limited extension to live cells. Reported here is an approach for studying uniquely modified proteins containing a traceless cell delivery unit and palladium‐based cleavable element for chemical activation, and monitoring the effect of these proteins in live cells. This approach is demonstrated for the synthesis of a caged ubiquitin‐aldehyde, which was decaged for the inhibition of deubiquitinases in live cells.  相似文献   

2.
Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C−P bonds involves cross‐coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition‐metal‐catalyzed generation of C−P bonds from amides. This redox‐neutral protocol can be combined with site‐selective conventional cross‐coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni‐catalyzed C−P bond forming method will find broad application.  相似文献   

3.
Selenocysteine, the selenium‐containing analogue of cysteine, is the twenty‐first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.  相似文献   

4.
The design and synthesis of biomolecules that are responsive to external stimuli is of great interest in various research areas, such as in the preparation of smart biomaterial and chemical biology. Polypeptide backbone disassembly as a response to a particular stimulus is of interest, as it leads to a complete loss of the protein tertiary structure and, as a result, to a loss of function. In this study, a strategy based on palladium‐assisted efficient cleavage of backbone thiazolidine linkage in peptides and proteins was developed. Using a fluorescence‐based assay, encompassing ubiquitinated peptide with a quenching florescence pair, it was possible to optimize the cleavage step after rapid screening of various conditions, such as the type of metal complexes and reaction additives. The optimized conditions prompted fast cleavage of the thiazolidine linkage. The straightforward introduction of a backbone thiazolidine linkage in peptide and proteins coupled with the chemical methods used offers new opportunities in controlling macromolecule function and might, with the aid of cellular protein delivery methods, be applied in cellular settings.  相似文献   

5.
Direct cellular production of topologically complex proteins is of great interest both in supramolecular chemistry and protein engineering. We describe the first cellular synthesis of protein catenanes through the use of the p53 dimerization domain to guide the intertwining of two protein chains and SpyTag–SpyCatcher chemistry for efficient cyclization. The catenane topology was unambiguously proven by SDS‐PAGE, SEC, and partial digestion experiments and was shown to confer enhanced stability toward trypsin digestion relative to monomeric control mutants. The assembly–reaction synergy enabled by protein folding and genetically encoded protein chemistry offers a convenient yet powerful approach for creating mechanically interlocked, complex protein topologies in vivo.  相似文献   

6.
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium‐catalyzed cross‐coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step‐economical late‐stage diversification of α‐ and β‐amino acids, as well as peptides, through chemo‐selective C−H arylation under racemization‐free reaction conditions. The ligand‐accelerated C−H activation strategy proved water‐tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C−H arylations for the complexity‐increasing assembly of artificial peptides within a multicatalytic C−H activation manifold.  相似文献   

7.
A palladium‐catalyzed reaction of primary amines with iodoarenes produces γ‐arylated primary amines. A bulky salicylaldehyde, which is marked as easily available, installable, removable, and recoverable, plays a key role in directing palladium to site‐selectively activate the C−H bond located γ to the amino group.  相似文献   

8.
Over the past few decades, the Buchwald–Hartwig reaction has emerged as a powerful tool for forging C−N bonds, and has been vital to the pharmaceuticals, materials, and catalysis fields. However, asymmetric Buchwald–Hartwig amination reactions for constructing centered chirality, planar chirality, and axial chirality remain in their infancy owing to limited substrate scope and laggard ligand design. The recent surge in interest in the synthesis of C−N/N−N atropisomers, has witnessed a renaissance in asymmetric Buchwald–Hartwig amination chemistry as the first practical protocol for the preparation of C−N atropisomers. This review highlights reported asymmetric Buchwald–Hartwig amination protocols and provides a brief overview of their chemical practicality.  相似文献   

9.
One of the applied synthetic strategies for correct disulfide bond formation relies on the use of orthogonal Cys protecting groups. This approach requires purification before and after the deprotection steps, which prolongs the entire synthetic process and lowers the yield of the reaction. A major challenge in using this approach is to be able to apply one‐pot synthesis under mild conditions and aqueous media. In this study, we report the development of an approach for rapid disulfide bond formation by employing palladium chemistry and S‐acetamidomethyl‐cysteine [Cys(Acm)]. Oxidation of Cys(Acm) to the corresponding disulfide bond is achieved within minutes in a one‐pot operation by applying palladium and diethyldithiocarbamate. The utility of this reaction was demonstrated by the synthesis of the peptide oxytocin and the first total chemical synthesis of the protein thioredoxin‐1. Our investigation revealed a critical role of the Acm protecting group in the disulfide bond formation, apparently due to the generation of a disulfiram in the reaction pathway, which significantly assists the oxidation step.  相似文献   

10.
A series of glycoconjugates with defined connectivity were synthesized to investigate the impact of coupling Salmonella typhimurium O‐antigen to different amino acids of CRM197 protein carrier. In particular, two novel methods for site‐selective glycan conjugation were developed to obtain conjugates with single attachment site on the protein, based on chemical modification of a disulfide bond and pH‐controlled transglutaminase‐catalyzed modification of lysine, respectively. Importantly, conjugation at the C186‐201 bond resulted in significantly higher anti O‐antigen bactericidal antibody titers than coupling to K37/39, and in comparable titers to conjugates bearing a larger number of saccharides. This study demonstrates that the conjugation site plays a role in determining the immunogenicity in mice and one single attachment point may be sufficient to induce high levels of bactericidal antibodies.  相似文献   

11.
Recent years have seen a marked increase in the occurrence of sulfoximines in the chemical sciences, often presented as valuable motifs for medicinal chemistry. This has been prompted by both pioneering works taking sulfoximine containing compounds into clinical trials and the concurrent development of powerful synthetic methods. This review covers recent developments in the synthesis of sulfoximines concentrating on developments since 2015. This includes extensive developments in both S−N and S−C bond formations. Flow chemistry processes for sulfoximine synthesis are also covered. Finally, subsequent transformations of sulfoximines, particularly in N-functionalization are reviewed, including N−S, N−P, N−C bond forming processes and cyclization reactions.  相似文献   

12.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

13.
Compared to the α‐functionalization of aldehydes, ketones, even esters, the direct α‐modification of amides is still a challenge because of the low acidity of α‐CH groups. The α‐functionalization of N−H (primary and secondary) amides, containing both an unactived α‐C−H bond and a competitively active N−H bond, remains elusive. Shown herein is the general and efficient oxidative α‐oxyamination and hydroxylation of aliphatic amides including secondary N−H amides. This transition‐metal‐free chemistry with high chemoselectivity provides an efficient approach to α‐hydroxy amides. This oxidative protocol significantly enables the selective functionalization of inert α‐C−H bonds with the complete preservation of active N−H bond.  相似文献   

14.
The palladium(II)‐catalyzed C(sp3)−H alkynylation of oligopeptides was developed with tetrabutylammonium acetate as a key additive. Through molecular design, the acetylene motif served as a linchpin to introduce a broad range of carbonyl‐containing pharmacophores onto oligopeptides, thus providing a chemical tool for the synthesis and modification of novel oligopeptide–pharmacophore conjugates by C−H functionalization. Dipeptide conjugates with coprostanol and estradiol were synthesized by this method for potential application in targeted drug delivery to tumor cells with overexpressed nuclear hormone receptors.  相似文献   

15.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

16.
A new chemical method to site‐specifically modify natural proteins without the need for genetic manipulation is described. Our strategy involves the affinity‐labeling‐based attachment of a unique reactive handle at the surface of the target protein, and the subsequent selective transformation of the reactive handle by a bioorthogonal reaction to introduce a variety of functional probes into the protein. To demonstrate this approach, we synthesized labeling reagents that contain: 1) a benzenesulfonamide ligand that directs specifically to bovine carbonic anhydrase II (bCA), 2) an electrophilic epoxide group for protein labeling, 3) an exchangeable hydrazone bond linking the ligand and the epoxide group, and 4) an iodophenyl or acetylene handle. By incubating the labeling reagent with bCA, the reactive handle was covalently attached at the surface of bCA through epoxide ring opening. Either after or before removing the ligand by a hydrazone/oxime‐exhange reaction, which restores the enzymatic activity, the reactive handle incorporated could be derivatized by Suzuki coupling or Huisgen cycloaddition reactions. This method is also applicable to the target‐specific multiple modification in a protein mixture. The availability of various (photo)affinity‐labeling reagents and bioorthogonal reactions should extend the flexibility of this strategy for the site‐selective incorporation of many functional molecules into proteins.  相似文献   

17.
Controlled oxidation of palladium nanoparticles provided high‐valent PdIV oxo‐clusters which efficiently promote directed C−H halogenation reactions. In addition, palladium nanoparticles can undergo changes in oxidation states to provide both high‐valent PdIV and low‐valent Pd0 species within one system, and thus a tandem reaction of C−H halogenation and cross‐coupling (C−N, C−C, and C−S bond formation) was successfully established.  相似文献   

18.
Targeting protein surfaces involved in protein–protein interactions by using supramolecular chemistry is a rapidly growing field. NMR spectroscopy is the method of choice to map ligand‐binding sites with single‐residue resolution by amide chemical shift perturbation and line broadening. However, large aromatic ligands affect NMR signals over a greater distance, and the binding site cannot be determined unambiguously by relying on backbone signals only. We herein employed Lys‐ and Arg‐specific H2(C)N NMR experiments to directly observe the side‐chain atoms in close contact with the ligand, for which the largest changes in the NMR signals are expected. The binding of Lys‐ and Arg‐specific supramolecular tweezers and a calixarene to two model proteins was studied. The H2(C)N spectra track the terminal CH2 groups of all Lys and Arg residues, revealing significant differences in their binding kinetics and chemical shift perturbation, and can be used to clearly pinpoint the order of ligand binding.  相似文献   

19.
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in‐cell distance measurements by the double electron–electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol‐specific DOTA‐derivative (DO3MA‐3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in‐cell distance measurements by the DEER method carried out at W‐band frequencies. The high performance of DO3MA‐3BrPy‐GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High‐quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in‐cell protein concentrations as low as 5–10 μm .  相似文献   

20.
Demonstrated herein is a highly effective 3 starting materials–4 component reaction (3SM‐4CR) strategy for the synthesis of pyrimidine carboxamides from amidines, styrene, and N ,N ‐dimethylformamide (DMF) by a palladium‐catalyzed oxidative process. This transformation represents the first example of employing DMF as a dual synthon, a one‐carbon‐atom synthon and amide synthon, and was proven by isotope‐labeling experiments. Additionally, the combination of C−H bond functionalization and cross‐dehydrogenative coupling processes affords four chemical bond formations. This sequential 3SM‐4CR strategy features inexpensive, readily available starting materials, green oxidants, as well as atom and step economy. It leads to the preparation of pyrimidine carboxamides and has potential applications in the pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号