首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   

2.
Twenty‐four D‐A′–π‐A dyes were rapidly synthesized through a one‐pot three‐component Suzuki–Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar‐cell performance of all the synthesized dyes. The D5 πA4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.4 %. The short‐circuit current (Jsc) was the most important parameter for the conversion efficiency (η) in the case of the organic D‐A′‐π‐A dyes. Optimal ranges for the D‐A′‐π‐A dyes were observed for high values of Jsc/λmax at λ=560–620 nm, an optical‐absorption edge of λ=690–790 nm, and EHOMO and ELUMO values of <1.14 and ?0.56 to ?0.76 V, respectively.  相似文献   

3.
Development of triaryamine‐based nonmetallic dye sensitizers is a hot topic in the solar cell research. A series of triaryamine‐based dyes WS1 – WS7 were designed with W1 as the prototype. Density functional theory (DFT) and time‐dependent‐DFT calculations were used to investigate the effects of the attached donor D on the absorption spectra and electronic properties of the dyes. The light‐harvesting efficiency (LHE), hole injection force (ΔGinj), dye regeneration force (ΔGreg), and charge recombination force (ΔGCR) for all the dyes were predicted. The insertion of D not only results in a red shift in the absorption spectra for all dyes but also achieves a broader absorption for visible light. Compared with that of the prototype, the absorption peak of the dye WS7 has a red shift of 95 nm and an oscillator strength increase of 29%. The absorption peak of WS7 is wider and stronger, and the absorption range extends to 900 nm. The LHE and ΔGreg values of WS7 are 0.991 and ?1.49 eV, respectively. On overall evaluation, WS7 is a promising candidate of a p‐type dye sensitizer with good light absorption and dye regeneration efficiency.  相似文献   

4.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

5.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

6.
Two D ‐π‐A conjugated molecules, BzTCA and BzTMCA , were developed through facile synthetic approaches for dye‐sensitized solar cells. The investigation of the photophysical properties of BzTCA and BzTMCA both in dilute solutions and in thin films indicates that their absorption exhibits a wide coverage of the solar spectrum. The absorption features for BzTCA and BzTMCA commence at about 710 nm in solution, and at about 800 nm in the solid state. The absorption maxima (λmax) for both BzTCA and BzTMCA on TiO2 film are almost the same as those in dilute solution. Their HOMOs and LUMOs were found to partly overlap at the center of these dyes, which guarantees appreciable interactions between the donors and acceptors. The investigation of the performance of dye‐sensitized solar cells fabricated from BzTCA and BzTMCA indicated that the power‐conversion efficiencies are 6.04 % and 4.68 %, respectively, which could be comparable with the normal sensitizer N3. BzTMCA showed lower incident photon‐to‐electron conversion efficiency (IPCE) and Jsc values relative to BzTCA , which is probably because of the weaker driving force of dye regeneration and electron injection process of BzTMCA . The IPCE responsive area reached nearly 800 nm, which provides great potential for further improvement of the photocurrent density and power‐conversion efficiency. Our investigations demonstrate that both dyes BzTCA and BzTMCA could be promising candidates for dye‐sensitized solar cells.  相似文献   

7.
The photophysical properties of a Keggin‐type polyoxometalate (POM) covalently bounded to a benzospiropyran (BSPR) unit have been investigated. These studies reveal that both closed and open forms are emissive with distinct spectral features (λ em (closed form)=530 nm, λ em (open form)=670 nm) and that the fluorescence of the BSPR unit of the hybrid is considerably enhanced compared to BSPR parent compounds. While the fluorescence excitation energy of the BSPR reference compounds (370 nm) is close to the intense absorption responsible of the photochromic character (350 nm), the fluorescence excitation of the hybrid is shifted to lower energy (400 nm), improving the population of the emissive state. Combined NOESY NMR and theoretical calculations of the closed form of the hybrid give an intimate understanding of the conformation adopted by the hybrid and show that the nitroaryl moieties of the BSPR is folded toward the POM, which should affect the electronic properties of the BSPR.  相似文献   

8.
The synthesis of organometallic complexes of modified 26π‐conjugated hexaphyrins with absorption and emission capabilities in the third near‐infrared region (NIR‐III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis‐PdII and bis‐PtII complexes of hexaphyrin via N‐confusion modification led to substantial metal dπ–pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO–LUMO energy gap. A remarkable long‐wavelength shift of the lowest S0→S1 absorption beyond 1700 nm was achieved with the bis‐PtII complex, t ‐Pt2‐3 . The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t ‐Pt2‐3 potentially useful as a NIR‐III PA contrast agent. The rigid bis‐PdII complexes, t ‐Pd2‐3 and c ‐Pd2‐3 , are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR‐III‐emissive and photoacoustic‐response capabilities.  相似文献   

9.
Far‐red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground‐state depletion (GSDIM) super‐resolution microscopy are presented. Fluorinated silicon–rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high‐yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon–rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750–775 nm provides excellent imaging performance and suppresses re‐excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far‐red emitting dyes (photobleaching, optical resolution, and switch‐off behavior) are discussed in detail and compared with those of some well‐established fluorophores with similar spectral properties.  相似文献   

10.
《化学:亚洲杂志》2017,12(22):2908-2915
A series of unsymmetrical (D‐A‐D1, D1‐π‐D‐A‐D1, and D1‐A1‐D‐A2‐D1; A=acceptor, D=donor) and symmetrical (D1‐A‐D‐A‐D1) phenothiazines ( 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f , and 5 f′ ) were designed and synthesized by a [2+2] cycloaddition–electrocyclic ring‐opening reaction of ferrocenyl‐substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge‐transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f and 5 f′ show redshifted absorption in the λ =400 to 900 nm region, as a result of a low HOMO–LUMO gap, which is supported by TD‐DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD acceptors. The incorporation of cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.  相似文献   

11.
Dye‐sensitized solar cells (DSSCs) based on CuII/I bipyridyl or phenanthroline complexes as redox shuttles have achieved very high open‐circuit voltages (VOC, more than 1 V). However, their short‐circuit photocurrent density (JSC) has remained modest. Increasing the JSC is expected to extend the spectral response of sensitizers to the red or NIR region while maintaining efficient electron injection in the mesoscopic TiO2 film and fast regeneration by the CuI complex. Herein, we report two new D‐A‐π‐A‐featured sensitizers termed HY63 and HY64 , which employ benzothiadiazole (BT) or phenanthrene‐fused‐quinoxaline (PFQ), respectively, as the auxiliary electron‐withdrawing acceptor moiety. Despite their very similar energy levels and absorption onsets, HY64 ‐based DSSCs outperform their HY63 counterparts, achieving a power conversion efficiency (PCE) of 12.5 %. PFQ is superior to BT in reducing charge recombination resulting in the near‐quantitative collection of photogenerated charge carriers.  相似文献   

12.
A series of metal‐free organic dyes with electron‐rich (D) and electron‐deficient units (A) as π linkers have been studied theoretically by means of density functional theory (DFT) and time‐dependent DFT calculations to explore the effects of π spacers on the optical and electronic properties of triphenylamine dyes. The results show that Dye 1 with a structure of D‐A‐A‐A is superior to the typical C218 dye in various key aspects, including the maximum absorption (λmax=511 nm), the charge‐transfer characteristics (Dq/t is 5.49 Å/0.818 e?/4.41 Å), the driving force for charge‐carrier injection (ΔGinject=1.35 eV)/dye regeneration (ΔGregen=0.27 eV), and the lifetime of the first excited state (τ=3.1 ns). It is thus proposed to be a promising candidate in dye‐sensitized solar cell applications.  相似文献   

13.
A new photosynthetic antenna‐reaction‐center model compound composed of covalently linked BF2‐chelated dipyrromethene (BODIPY), BF2‐chelated azadipyrromethene (azaBODIPY), and fullerene (C60), in a “V‐configuration”, has been newly synthesized and characterized by using a multistep synthetic procedure. Optical absorbance and steady‐state fluorescence, computational, and electrochemical studies were systematically performed in nonpolar, toluene, and polar, benzonitrile, solvents to establish the molecular integrity of the triad and to construct an energy‐level diagram revealing different photochemical events. The geometry obtained by B3LYP/6‐31G* calculations revealed the anticipated V‐configuration of the BODIPY‐azaBODIPY‐C60 triad. The location of the frontier orbitals in the triad tracked the site of electron transfer determined from electrochemical studies. The different photochemical events originated from 1BODIPY* were realized from the energy‐level diagram. Accordingly, 1BODIPY* resulted in competitive ultrafast energy transfer to produce BODIPY–1azaBODIPY*–C60 and electron transfer to produce BODIPY . +–azaBODIPY–C60 . ? as major photochemical events. The charge‐separated state persisted for few nanoseconds prior populating 3C60*, which in turn revealed an unusual triplet–triplet energy transfer to produce 3azaBODIPY* prior returning to the ground state. These findings delineate the importance of multimodular systems in energy harvesting, and more importantly, their utility in building multifunction performing optoelectronic devices.  相似文献   

14.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

15.
Protonation of poly(o‐toluidine) base form (POT‐EB) with 5‐sulfosalicylic acid (SSA) was proved experimentally and computationally. Molecular mechanics (MM+) calculations showed that the potential energy (PE) of the optimum molecular geometric structure of SSA‐doped POT is 4.703 × 103 kcal mol?1 or at least three orders of magnitude higher than the PE of the molecular geometric structure of the same matrix. These calculations indicate that the optimization of this matrix is necessary for understanding the stability. Dark green coloration (λ ~800 nm) after addition of SSA into POT‐EB matrix (dark blue, λ ~600 nm) revealed that the SSA was working as a protonating agent to convert POT base form (POT‐EB) to salt form (SSA‐doped POT). The change of the dark green color of SSA‐doped POT to dark brown (λ ~500 nm) after addition of oxidant (K2CrO4) was due to the highest oxidized form of the matrix obtained (the quinoid one), which undergoes a hydrolysis reaction to produce p‐hydroquinone (H2Q) by a mechanism similar to Schiff‐base hydrolysis. Kinetic parameters of the oxidation reaction were deduced employing a computer‐aided kinetic analysis of the absorbance (A) at ~800 nm against the hydrolysis time (t) data. The results obtained indicate that the rate controlling process may be governed by the Ginstling–Brounshetin equation for three‐dimensional diffusion (D4). The proposed mechanism for the oxidation of SSA‐doped POT matrix is also supported by MM+ calculations. Activation parameters for the rate of the oxidation process of acid‐doped POT matrix have been computed and discussed. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 260–272, 2003  相似文献   

16.
A reaction sequence of regioselective peripheral bromination, Suzuki–Miyaura coupling with 2‐borylated thiophene or pyrrole, and oxidative ring‐closure with FeCl3 allowed the synthesis of heterole‐fused earring porphyrins 4Pd and 9Pd from the parent earring porphyrin 1 . Differently pyrrole‐fused porphyrins 5H and 6H and their PdII complexes 5Pd and 6Pd were also synthesized. The structures of 4Pd , 5H, 6Pd , and 8Pd have been revealed by X‐ray analysis to be slightly twisted owing to constraints imposed by heterole‐fused structures. 5Pd exhibits an intensified band at 1505 nm, while 4Pd and 9Pd display small but remarkably red‐shifted absorption bands reaching around 2200 nm.  相似文献   

17.
A reaction sequence of regioselective peripheral bromination, Suzuki–Miyaura coupling with 2‐borylated thiophene or pyrrole, and oxidative ring‐closure with FeCl3 allowed the synthesis of heterole‐fused earring porphyrins 4Pd and 9Pd from the parent earring porphyrin 1 . Differently pyrrole‐fused porphyrins 5H and 6H and their PdII complexes 5Pd and 6Pd were also synthesized. The structures of 4Pd , 5H, 6Pd , and 8Pd have been revealed by X‐ray analysis to be slightly twisted owing to constraints imposed by heterole‐fused structures. 5Pd exhibits an intensified band at 1505 nm, while 4Pd and 9Pd display small but remarkably red‐shifted absorption bands reaching around 2200 nm.  相似文献   

18.
Luminescence downshifting (LDS) of light can be a practical photon management technique to compensate the narrow absorption band of high‐extinction‐coefficient dyes in dye‐sensitized solar cells (DSSCs). Herein, an optical analysis on the loss mechanisms in a reflective LDS (R‐LDS)/DSSC configuration is reported. For squaraine dye (550–700 nm absorption band) and CaAlSiN3:Eu2+ LDS material (550–700 nm emission band), the major loss channels are found to be non‐unity luminescence quantum efficiency (QE) and electrolyte absorption. By using an ideal LDS layer (QE=100 %), a less absorbing electrolyte (Co‐based), and antireflection coatings, approximately 20 % better light harvesting is obtained. If the absorption/emission band of dye/LDS is shifted to 800 nm, a maximal short‐circuit current density (Jsc) of 22.1 mA cm?2 can be achieved. By putting the LDS layer in front of the DSSC (transmissive mode), more significant loss channels are observed, and hence a lower overall efficiency than the R‐LDS configuration.  相似文献   

19.
Nuclear magnetic resonance spectra of synthesized azo dyes derived from aniline derivatives in reaction with benzoylacetone and 4‐hydroxycoumarin were studied in both CDCl3 and (CD3)2SO (two drops of D2O were added into solutions of dyes). All dyes showed intramolecular hydrogen bonding. Dyes derived from o‐nitro aniline in the reaction with benzoylacetone, and 4‐hydroxycoumarin showed bifurcated intramolecular hydrogen bonds. The solvent‐substrate proton exchange of dyes derived from benzoylacetone and 4‐hydroxycoumarin was examined in the presence of two drops of D2O. Among ten dye samples, two dyes derived from benzoylacetone did not show deuteration, three dyes showed partial deuteration and five dyes showed full deuteration under similar conditions. For the partially deuterated dyes the β‐isotope effect in 13C splitting was investigated and was used for the determination of the predominant tautomeric form. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号