首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

2.
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg2+, Pb2+, light metal Al3+ ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb2+/Al3+ metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb2+ and Al3+ ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb2+ and Al3+ ions.  相似文献   

3.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

4.
Two new indole derivatives have been synthesized by a one-pot procedure and their potential as fluorescence probes for metal ions was investigated. The sensor capability of 1 and 2 toward cations such as Ag+, Cu2+, Zn2+, Cd2+, Pb2+, and Hg2− was studied in dichloromethane solution by absorption, fluorescence emission, and 1H NMR titrations. Both probes showed selectivity for Ag+ and Hg2+ ions. The results suggest that these compounds may serve as promising models for future design of novel and more potent sensors.  相似文献   

5.
Bishnu Prasad Joshi 《Talanta》2009,78(3):903-1129
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg2+, Cd2+, Pb2+, Zn2+, and Ag+ in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd2+, Pb2+, Zn2+, and Ag+ were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.  相似文献   

6.
Using the Hg2+-induced desulfurization reaction of thiosemicarbazide derivative, we designed and synthesized a novel “turn on” coumarin-based fluorescent probe L with a simple structure for detecting mercury ion (II). Spectroscopy revealed that the probe responds selectively to mercury ions over other metal ions with marked fluorescence enhancement. Detection of Hg2+ was effective at pH 7.0–9.5, with high selectivity and significant effect in HeLa cells, human umbilical vein endothelial cells and Escherichia coli, but no cytotoxicity. This probe could be an ideal and practical Hg2+ probe with important biological significance.  相似文献   

7.
This work describes a novel strategy for the highly sensitive and selective detection of cysteine (Cys) and glutathione (GSH) based on the Hg2+–AGRO100–malachite green (MG) complex system. The dye MG, which has a very low quantum yield in aqueous solution by itself, can bind with the thymine‐rich DNA AGRO100 in the presence of Hg2+ ions to generate a striking fluorescence intensity enhancement of 1000‐fold. As sulfur‐containing amino acids, Cys and GSH effectively sequester Hg2+ ions from the Hg2+–AGRO100–MG complex structure to switch the ‘lit‐up’ chemosensor to the ‘off’ state (about a 50‐fold fluorescence intensity decrease), thus providing a facile, but effective, method to probe for Cys/GSH. The fluorescence titration, UV absorption, CD, and Raman spectra provide some insight into the structural and chemical basis for the enhancement effect. The formation of the Hg2+–AGRO100–MG complex significantly affects the electronic structure and conformation of the MG molecule by leading to an extended π system, which is the likely origin of the observed striking fluorescence intensity enhancement. Notably, the proposed sensing platform exhibits exquisite selectivity and sensitivity toward Cys/GSH with limits of detection of 5 nM for Cys and 10 nM for GSH, respectively. Furthermore, the straightforward assay design avoids labeling of the probe, uses only commercially available materials, and still displays comparable sensitivity and excellent selectivity.  相似文献   

8.
2-(2′,5′-Dihydroxy-phenyl)-4(3H)-quinazolinone (DHPQ), a new fluorescent dye that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesised and used as fluorescent probe for detection of Hg2+. Mercuric ions can be detected and quantitated by measuring the fluorescent intensity decrease of the probe. The decrease of fluorescence intensity of DHPQ upon the addition of Hg2+ was attributed to the blocking of ESIPT reactions of DHPQ and quenching its fluorescence. The analytical performance characteristics of the proposed Hg2+ probe were investigated. The probe can be applied to the quantification of Hg2+ with a concentration range covering from 8.0?×?10?7 to 2.0?×?10?4?mol?L?1, with a working pH range of 5.5–6.5. It shows excellent selectivity for Hg2+ over other transition metal cations. The proposed method was testified for the Hg2+ assay in river water samples with satisfying recoveries.  相似文献   

9.
A simple but highly selective coumarin-based fluorescence probe 1, 8-(1,3-dithiane)-7-hydroxycoumarin was designed and synthesized for both the ratiometric detection of Hg2+ and the on–off response to pH change in aqueous solution. The sensor detected Hg2+ selectively via Hg2+-promoted thioacetal deprotection reaction within five minutes and reflected pH in the range from 7.8 to 11.9 as a result of the equilibrium between weak-fluorescent acid form and strong-fluorescent base form. In addition, the probe has an excellent selectivity towards Hg2+ over other competitive metal ions for biomedical and environmental applications. The sensing behavior of our probe was studied by UV–visible absorption spectra and fluorescence spectra.  相似文献   

10.
The heavy metal mercury (Hg) is a threat to the health of people and wildlife in many environments. Among various chemical forms, Hg2+ salts are usually more toxic than their counterparts because of their greater solubility in water; thus, they are more readily absorbed from the gastrointestinal tract into circulation. Therefore, new chemical receptors for detecting Hg2+ ions in circulation are needed. In this study, we developed a rhodamine-based turn-on fluorescence probe to monitor Hg2+ in aqueous solution and in blood of mice with toxicosis. The chemodosimeter responds to Hg2+ ions stoichiometrically, rapidly, and irreversibly at room temperature as a result of a chemical reaction that produces strongly fluorescent oxadiazole. The new fluorescent probe shows good fluorescence response, with high sensitivity and selectivity, toward Hg2+ ions in aqueous solution and in blood from mice with toxicosis and facilitates the naked-eye detection of Hg2+ ions.  相似文献   

11.
ABSTRACT

In this work, a new turn-on fluorescent probe 1 for Hg2+ ions detection based on rhodamine B spirolactam was reported. Among tested metal ions, probe 1 shows high selectivity towards Hg2+ in the the mixture solution of methanol and 0.02 M HEPES buffer (V/V = 9:1, pH = 7.2). No absorption and emission band of probe 1 was observed in the range from 450 to 700 nm. While only addition of Hg2+ to probe 1 could lead to appearance of a new absorption band centered at 553 nm and a fluorescence emission band around 577 nm upon excitation at 520 nm. Moreover, it exhibits excellent linear relationship (R2 = 0.9993) between fluorescence intensity at 577 nm and the concentration of Hg2+ from 1.6 to 32 μM. The sensing mechanism was proven to be spirolactam ring open induced by Hg2+ through 1H NMR, MS, absorption and fluorescence spectra. In addition, probe 1 could detect Hg2+ in real water samples and on filter paper, which demonstrates its application in environment science.  相似文献   

12.
We develop a highly effective silole‐infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe3+ and Hg2+ ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC’s stopband. The fluorescence can be quenched significantly by Fe3+/Hg2+ ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe3+/Hg2+ ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe3+/Hg2+ ions sensor based on HPS‐infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.  相似文献   

13.
A novel ratiometric fluorescence sensing system for the ultrasensitive detection of Hg2+ was developed. It used aminofunctionalized silicon nanoparticles and rhodamine B, which exhibit two distinct fluorescence emission peaks at 449 and 581?nm, respectively, under a single excitation wavelength (350?nm). The fluorescence of the amino-functionalized silicon nanoparticles was selectively quenched by Hg2+, while that of rhodamine B was insensitive to Hg2+. The ratio of fluorescence intensities at 449–581?nm linearly decreased with increasing concentrations of Hg2+ from 0.005–0.1 and 0.1–7?µM within 0.5?min, and a detection limit as low as 3.3?nM was achieved. Moreover, the ratiometric fluorescence sensing system exhibited good selectivity toward Hg2+ over other metal ions with relatively low background interference, even in a complex matrix such as lake water. Most importantly, the practical use of this sensing system for Hg2+ detection in real water samples was also demonstrated.  相似文献   

14.
Highly selective and low‐cost optical nanosensors of organic–inorganic hybrid materials for heavy metal ions detection have been prepared via the functionalization of mesoporous silica (SBA‐16) with chalcone fluorescent chromophores. The successful attachment of organic chalcone moieties and preservation of original structure of SBA‐16 after the anchoring process were confirmed by extensive characterizations using various techniques like Fourier transform infrared and UV–visible spectroscopies, transmission electron microscopy, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analysis. The colorimetric behaviour, selectivity and sensitivity were also investigated. The optical nanosensors respond selectively to heavy metal ions, such as Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, with observable colour changes in 0.01 M Tris–HCl aqueous buffer solution. Also, the optical sensing ability of the investigated nanosensors to the mentioned metal ions was investigated using steady‐state absorption and emission techniques. Significant increase in the absorption spectra and a static quenching in the emission spectra are observed upon adding various concentrations of the studied metal ions. The spectral changes as well as the observable colour changes suggest that the investigated nanosensors are suitable for simple, economic, online analysis and remote design of these toxic metal ions with fast kinetic responses. Finally, the low detection limits for all the studied metals are in good agreement with those recommended by both the US Environmental Protection Agency and World Health Organization, except for Hg2+ and Cd2+, indicating that the investigated nanosensors have hypersensitivity, selectivity and better recognition for all the studied metal ions.  相似文献   

15.
We provide a highly sensitive and selective assay to detect Hg2+ in aqueous solutions using single fluorescence-labeled G-quadruplex at room temperature. The mechanism is that AS1411 converted to G-quadruplex in the presence of potassium ion, and then, by this technique utilizing the high binding capacity of T–Hg2+–T makes the fluorescence dye come closer to GGG of AS1411 to causing fluorescence signal quenching by photoinduced electron transfer energy transfer. At physiological pH, the detection limit can be as low as 10 nM, with high selectivity toward Hg2+ ions over a lot of metal ions. The linear correlation existed between the fluorescence intensity and the concentration of Hg2+ over the range of 0–250 nM (R = 0.9920) in real sample. Accordingly, we expect this G-quadruplex-based sensor will be a potential application for detection of environmentally toxic mercury.  相似文献   

16.
Organic molecular devices for information processing applications are highly useful building blocks for constructing molecular‐level machines. The development of “intelligent” molecules capable of performing logic operations would enable molecular‐level devices and machines to be created. We designed a series of 2,5‐diaryl‐1,3,4‐oxadiazoles bearing a 2‐(para‐substituted)phenyl and a 5‐(o‐pyridyl) group (substituent X=NMe2, OEt, Me, H, and Cl; 1 a – e ) that form a bidentate chelating environment for metal ions. These compounds showed fluorescence response profiles varying in both emission intensity and wavelength toward the tested metal ions Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+ and the responses were dependent on the substituent X, with those of 1 d being the most substantial. The 1,3,4‐oxadiazole O or N atom and pyridine N atom were identified as metal‐chelating sites. The fluorescence responses of 1 d upon metal chelation were employed for developing truth tables for OR, NOR, INHIBIT, and EnNOR logic gates as well as “ON‐OFF‐ON” and “OFF‐ON‐OFF” fluorescent switches in a single 1,3,4‐oxadiazole molecular system.  相似文献   

17.
A new poly(p‐phenylene ethynylene) derivative with pendant 2,2′‐bipyridyl groups and glycol units (PPE‐bipy) has been prepared, and its metal ion sensing properties were investigated. The polymer of PPE‐bipy exhibited high selectivity for Hg2+ as compared with Li+, Na+, K+, Ba2+, Ca2+, Mg2+, Al3+, Mn2+, Ag+, Zn2+, Pb2+, Ni2+, Cd2+, Cu2+, Co,2+ and Fe3+ in THF/EtOH (1:1, v/v) solution. The fluorescence of PPE‐bipy was efficiently quenched by Hg2+ ions, and the detection limit was found to be 8.0 nM in a THF/EtOH (1:1, v/v) solvent system. PPE‐bipy also showed a selective chromogenic behavior toward Hg2+ ions by changing the color of the solution from slight yellow to colorless, which can be detected with the naked eye. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1998–2007, 2008  相似文献   

18.
A low‐molecular‐weight fluorescent probe 1 (M.W. = 238.24) based on aurone was synthesized, and its application in fluorescent detection of Hg2+ in aqueous solution and living cells was reported. It exhibited an “on–off” fluorescent response toward Hg2+ in aqueous solution. Both the color and fluorescence changes of the probe were remarkably specific for Hg2+ in the presence of other common metal ions, satisfying the selective requirements for biomedical and environmental monitoring application. The probe has been applied in direct measurement of Hg2+ content in river water samples and imaging of Hg2+ in living cells, which further indicates the potential application values in environmental and biological systems.  相似文献   

19.
A novel capillary with high sensitivity and selectivity for mercury ion detection based on modified nanosize silica has been designed and synthesized. The obtained modified capillary was applied to separate and determine mercury ion by capillary electrophoresis with a laser‐induced fluorescence detector. The optimal experimental conditions were determined by evaluating various controlling factors: running buffer hexamine‐HCl 15 mmol L?1, pH=5.2, separation voltage 30 kV and temperature 25 °C. The modified capillary exhibited excellent sensitivity and selectivity for Hg2+ over other coexisting metal ions (K+, Ag+, Ca2+, Mg2+, Ba2+, Ni2+, Cd2+, Pb2+ and Zn2+ increased to 10000 times of Hg2+, Cu2+ increased to 5000 times) in aqueous solution, and was successfully applied to the determination of Hg2+ in natural water samples and displayed satisfactory results.  相似文献   

20.
Starting from commercially available and relatively cheap chemicals a novel silica gel-bound acridino-18-crown-6 ether was prepared. Selectivity of the latter stationary phase toward different metal ions was studied. The stationary phase showed appreciable selectivity for Ag+, Cu2+, and Hg2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号