首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

2.
A series of pyrazole‐substituted [hydrotris(1H‐pyrazolato‐κN1)borato(1−)]iridium complexes of the general composition [Ir(Tpx)(olefin)2] (Tpx=TpPh and TpTh) and their capability to activate C−H bonds is presented. As a test reaction, the double C−H activation of cyclic‐ether substrates leading to the corresponding Fischer carbene complexes was chosen. Under the reaction conditions employed, the parent compound [Ir(TpPh)(ethene)2] was not isolable; instead, (OC‐6‐25)‐[Ir(TpPhκCPh,κ3N,N′,N″)(ethyl)(η2‐ethene)] ( 1 ) was formed diastereoselectively. Upon further heating, 1 could be converted exclusively to (OC‐6‐24)‐[Ir(TpPhκ2CPh,CPh,κ3N,N′,N″)(η2‐ethene)] ( 2 ). Complex 1 , but not 2 , reacted with THF to give (OC‐6‐35)‐[Ir(TpPhκ3N,N′,N″)H(dihydrofuran‐2(3H)‐ylidene)] ( 3 ), a cyclic Fischer carbene formed by double C−H activation of THF. Accordingly, complexes of the general formula [Ir(Tpx)(butadiene)] (see 4 – 6 ; butadiene=buta‐1,3‐diene, 2‐methylbuta‐1,3‐diene (isoprene), 2,3‐dimethylbuta‐1,3‐diene) reacted with THF to yield 3 or the related derivative 9 . The reaction rate was strongly dependent on the steric demand of the butadiene ligand and the nature of the substituent at the 3‐position of the pyrazole rings.  相似文献   

3.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

4.
《化学:亚洲杂志》2017,12(14):1790-1795
Owing to the demands of state‐of‐the‐art information technologies that are suitable for vast data storage, the necessity for organic memory device (OMD) materials is highlighted. However, OMDs based on metal complexes are limited to several types of transition‐metal complex systems containing nitrogen‐donor ligands. Herein, attempts are made to introduce novel alkynylgold(III) materials into memory devices with superior performance. In this respect, an alkynyl‐containing coumarin gold(III) complex, [(C19N5H11)Au−C≡C−C9H5O], has been synthesized and integrated into a sandwiched Al/[(C19N5H11)Au−C≡C−C9H5O]/indium tin oxide device. By precisely controlling the compliance current (I cc), the devices show different switching characteristics from flash‐type binary resistance switching (I cc≤10−3 A) to WORM‐type (WORM=write once read many times) ternary resistance switching (I cc=10−2 A). This work explores electrical gold(III) complex based memories for potential use in organic electronics.  相似文献   

5.
The double C? H bond activation of a series of linear and cyclic ethers by the iridium complex [Tptol′Ir(C6H5)(N2)] ( 2? N2), which features a cyclometalated hydrotris(3‐p‐tolylpyrazol‐1‐yl)borate ligand (Tptol′) coordinated in a κ4N,N′,N′′,C manner, has been studied. Two methyl ethers, namely, Me2O and MeOtBu, along with diethyl ether and the cyclic ethers tetrahydrofuran, tetrahydropyran (THP), and 1,4‐dioxane have been investigated with formation in every case of the corresponding hydride carbene complexes 3 – 8 , which are stabilized by κ4‐coordination of the ancillary Tptol′ ligand. Five of the compounds have been structurally authenticated by X‐ray crystallography. A remarkable feature of these rearrangements is the reversibility of the double C? H bond activation of Me2O, MeOtBu, Et2O, and THP. This has permitted catalytic deuterium incorporation into the methyl groups of the two methyl ethers, although in a rather inefficient manner (for synthetic purposes). Although possible in all cases, C? C coupling by migratory insertion of the carbene into the Ir? C σ bond of the metalated linkage has only been observed for complex 8 that contains a cyclic carbene that results from α,α‐C? H activation of 1,4‐dioxane. Computational studies on the formation of iridium carbenes are also reported, which show a role for metalated Tp ligands in the double C? H activation and account for the reversibility of the reaction in terms of the relative stability of the reagents and the products of the reaction.  相似文献   

6.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

7.
In the comproportionation reaction of CuIIX2 and Cu0 with isopropylacetylene (iPr−C≡C−H), the ethynediide species C22− is generated via concomitant C−H/C−C bond cleavage of the iPr−C≡C−H precursor under moderate temperature to direct the formation of CuI mixed ethynediide/isopropylethynide nanoclusters (potentially explosive). The active ethynediide dianion C22− exhibits chameleon‐like templating behavior to form C2@Cum (m =6 ( 3 , 4 ), 7 ( 2 , 4 ), 8 ( 1 )) central structural units for successive formation of {C22−⊂Cu24} ( 1 , 2 ), {6 C22−⊂Cu48} ( 3 ), and {18 C22−⊂Cu92} ( 4 ) complexes. Bearing the highest C22− content, complex 4 features an unprecedented nanoscale Cu2C2 kernel. Furthermore, 1 – 3 exhibit structure‐controlled photoluminescence in the solid state.  相似文献   

8.
A series of unusual chemical‐bond transformations were observed in the reactions of high active yttrium? dialkyl complexes with unsaturated small molecules. The reaction of scorpionate‐anchored yttrium? dibenzyl complex [TpMe2Y(CH2Ph)2(thf)] ( 1 , TpMe2=tri(3,5‐dimethylpyrazolyl)borate) with phenyl isothiocyanate led to C?S bond cleavage to give a cubane‐type yttrium–sulfur cluster, {TpMe2Y(μ3‐S)}4 ( 2 ), accompanied by the elimination of PhN?C(CH2Ph)2. However, compound 1 reacted with phenyl isocyanate to afford a C(sp3)? H activation product, [TpMe2Y(thf){μ‐η13‐OC(CHPh)NPh}{μ‐η32‐OC(CHPh)NPh}YTpMe2] ( 3 ). Moreover, compound 1 reacted with phenylacetonitrile at room temperature to produce γ‐deprotonation product [(TpMe2)2Y]+[TpMe2Y(N=C?CHPh)3]? ( 6 ), in which the newly formed N?C?CHPh ligands bound to the metal through the terminal nitrogen atoms. When this reaction was carried out in toluene at 120 °C, it gave a tandem γ‐deprotonation/insertion/partial‐TpMe2‐degradation product, [(TpMe2Y)2(μ‐Pz)2{μ‐η13‐NC(CH2Ph)CHPh}] ( 7 , Pz=3,5‐dimethylpyrazolyl).  相似文献   

9.
A new method for the modification of a silylamino ligand has been developed through mono and dual C(sp3)−H/Si−H cross-dehydrocoupling with silanes. The reaction of [LY{η2-(C,N)-CH2Si(Me2)NSiMe3}] (L=bis(2,6-diisopropylphenyl)-β-diketiminato, L′ ( 1L ′); L=tris(3,5-dimethylpyrazolyl)borate, TpMe2 ( 1TpMe2 )) with 2 equivalents of PhSiH3 in toluene gave the complexes [LY{η2-(C,N)-C(SiH2Ph)2Si(Me2)NSiMe3}] (L=L′ ( 2L’ ); L=TpMe2 ( 2TpMe2 )). Moreover, 1TpMe2 reacted with the secondary silanes Ph2SiH2 and Et2SiH2 to afford the corresponding mono C−H activation products [TpMe2Y{η2-(C,N)-CH(SiHR2)Si(Me2)NSiMe3}] (R=Ph ( 4 b ); R=Et ( 4 c )). The equimolar reaction of 1TpMe2 with PhSiH3 also produced the mono C−H activation product 4 a ([TpMe2Y{η2-(C,N)-CH(SiH2Ph)Si(Me2)NSiMe3}(thf)]). A study of their reactivity showed that 4 a facilely reacted with 2 equivalents of benzothiazole by an unusual 1,1-addition of the C=N bond of the benzothiazolyl unit to the Si−H bond to give the C−H/Si−H cross-dehydrocoupling product [(TpMe2)Y{η3-(N,N,N)-N(SiMe3)SiMe2CH2Si(Ph)(CSC6H4N)(CHSC6H4N)}] ( 5 ). These results indicate that this modification endows the silylamino ligand with novel reactivity.  相似文献   

10.
Treatment of Co4(CO)12 with an excess of trimethylsilylacetylene (TMSA) in the presence of tri(2‐thienyl)phosphine in THF at 25 °C for 2 hours yielded six compounds. Two pseudo‐octahedral, alkyne‐bridged tetracobalt clusters, [Co44‐η2‐HC≡CSiMe3)(CO)10(μ‐CO)2] ( 4 ) and [Co44‐η2‐HC≡CSiMe3)‐(CO)9(μ‐CO)2{P(C4H4S)3}] ( 6 ), along with an alkyne‐bridged dicobalt complex, [Co2(CO)5(μ‐HC≡CSiMe3)‐{P(C4H4S)3}] ( 5 ), were obtained as new compounds. The addition of the thienylphosphine ligand, in fact, facilitates the reaction rate. Reaction of an alkyne‐bridged dicobalt complex, [(η2‐H‐C≡C‐SiMe3)Co2(CO)6] ( 3 ), with a bi‐functional ligand, PPh(‐C≡C‐SiMe3)2, yielded an unexpected six‐membered, cyclic compound, {(Ph)(Me3Si‐C≡C)P‐[(η2‐C≡C‐SiMe3)Co2(CO)5]}2 ( 7 ). All of these new compounds were characterized by spectroscopic means; the solid‐state structures of ( 5 ), ( 6 ) and ( 7 ) have been established by X‐ray crystallography.  相似文献   

11.
Gentisate‐1,2‐dioxygenase (GDO), a nonheme iron enzyme in the cupin superfamily, catalyzes the cleavage of the aromatic‐ring of 2,5‐dihydroxybenzoic acid (gentisic acid) to form maleylpyruvic acid in the microbial aerobic degradation of aromatic compounds. To develop a functional model of GDO, we have isolated a nonheme iron(II) complex, [(TpPh2)FeII(DHN‐H)] (TpPh2=hydrotris(3,5‐diphenylpyrazole‐1‐yl)borate, DHN‐H=1,4‐dihydroxy‐2‐naphthoate). In the reaction with O2, the biomimetic complex oxidatively cleaves the aromatic ring of the coordinated substrate with the incorporation of both the oxygen atoms from molecular oxygen into the cleavage product. The presence of para‐hydroxy group on the substrate plays a crucial role in directing the aromatic‐ring cleaving reaction.  相似文献   

12.
Chloride abstraction from [(R,R)‐(iPrDuPhos)Co(μ‐Cl)]2 with NaBArF4 (BArF4=B[(3,5‐(CF3)2)C6H3]4) in the presence of dienes, such as 1,5‐cyclooctadiene (COD) or norbornadiene (NBD), yielded long sought‐after cationic bis(phosphine) cobalt complexes, [(R,R)‐(iPrDuPhos)Co(η22‐diene)][BArF4]. The COD complex proved substitutionally labile undergoing diene substitution with tetrahydrofuran, NBD, or arenes. The resulting 18‐electron, cationic cobalt(I) arene complexes, as well as the [(R,R)‐(iPrDuPhos)Co(diene)][BArF4] derivatives, proved to be highly active and enantioselective precatalysts for asymmetric alkene hydrogenation. A cobalt–substrate complex, [(R,R)‐(iPrDuPhos)Co(MAA)][BArF4] (MAA=methyl 2‐acetamidoacrylate) was crystallographically characterized as the opposite diastereomer to that expected for productive hydrogenation demonstrating a Curtin–Hammett kinetic regime similar to rhodium catalysis.  相似文献   

13.
The facile synthesis of a stable and isolable compound with a fluoroalkynyl group, M−C≡CF, is reported. Reaction of [Ru(C≡CH)(η5‐C5Me5)(dppe)] with an electrophilic fluorinating agent (NFSI) results in the formation of the fluorovinylidene complex [Ru(=C=CHF)(η5‐C5Me5)(dppe)][N(SO2Ph)2]. Subsequent deprotonation with LiN(SiMe3)2 affords the fluoroalkynyl complex [Ru(C≡CF)(η5‐C5Me5)(dppe)]. In marked contrast to the rare and highly reactive examples of fluoroalkynes that have been reported previously, this compound can be readily isolated and structurally characterized. This has allowed the structure and bonding in the CCF motif to be explored. Further electrophilic fluorination of this species yields the difluorovinylidene complex [Ru(C=CF2)(η5‐C5Me5)(dppe)][N(SO2Ph)2].  相似文献   

14.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

15.
Nitrogenase enzymes mediate the six‐electron reductive cleavage of cyanide to CH4 and NH3. Herein we demonstrate for the first time the liberation of CH4 and NH3 from a well‐defined iron cyanide coordination complex, [SiPiPr3]Fe(CN) (where [SiPiPr3] represents a tris(phosphine)silyl ligand), on exposure to proton and electron equivalents. [SiPiPr3]Fe(CN) additionally serves as a useful entry point to rare examples of terminally‐bound Fe(CNH) and Fe(CNH2) species that, in accord with preliminary mechanistic studies, are plausible intermediates of the cyanide reductive protonation to generate CH4 and NH3. Comparative studies with a related [SiPiPr3]Fe(CNMe2) complex suggests the possibility of multiple, competing mechanisms for cyanide activation and reduction.  相似文献   

16.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

17.
Heteroleptic silylamido complexes of the heavier alkaline earth elements calcium and strontium containing the highly fluorinated 3‐phenyl hydrotris(indazolyl)borate {F12‐Tp4Bo, 3Ph}? ligand have been synthesized by using salt metathesis reactions. The homoleptic precursors [Ae{N(SiMe3)2}2] (Ae=Ca, Sr) were treated with [Tl(F12‐Tp4Bo, 3Ph)] in pentane to form the corresponding heteroleptic complexes [(F12‐Tp4Bo, 3Ph)Ae{N(SiMe3)2}] (Ae=Ca ( 1 ); Sr ( 3 )). Compounds 1 and 3 are inert towards intermolecular redistribution. The molecular structures of 1 and 3 have been determined by using X‐ray diffraction. Compound 3 exhibits a Sr ??? MeSi agostic distortion. The synthesis of the homoleptic THF‐free compound [Ca{N(SiMe2H)2}2] ( 4 ) by transamination reaction between [Ca{N(SiMe3)2}2] and HN(SiMe2H)2 is also reported. This precursor constitutes a convenient starting material for the subsequent preparation of the THF‐free complex [(F12‐Tp4Bo, 3Ph)Ca{N(SiMe2H)2}] ( 5 ). Compound 5 is stabilized in the solid state by a Ca???β‐Si?H agostic interaction. Complexes 1 and 3 have been used as precatalysts for the intramolecular hydroamination of 2,2‐dimethylpent‐4‐en‐1‐amine. Compound 1 is highly active, converting completely 200 equivalents of aminoalkene in 16 min with 0.50 mol % catalyst loading at 25 °C.  相似文献   

18.
The stable cationic iridacyclopentenylidene [TpMe2Ir(?CHC(Me)?C(Me)C H2(NCMe)]PF6 ( A ; TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate) has been obtained by α‐hydride abstraction from the iridacyclopent‐2‐ene [TpMe2Ir(CH2C(Me)?C(Me)C H2)(NCMe)]. Complex A exhibits Brønsted–Lowry acidity at the Ir? CH2 and proximal (relative to Ir? CH2) methyl sites. The coordination of an extra molecule of acetonitrile to the iridium center initiates the reversible isomerization of the chelating carbon chain of A to the monodentate butadienyl ligand of complex [TpMe2Ir(CH?C(Me)C(Me)?CH2)(NCMe)2]PF6, which is capable to engage in a water‐promoted C? C coupling with the MeCN co‐ligands. The product is an aesthetically appealing bicyclic structure that resembles the hydrocarbon barrelene.  相似文献   

19.
The stable cationic iridacyclopentenylidene [TpMe2Ir(CHC(Me)C(Me)C H2(NCMe)]PF6 ( A ; TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate) has been obtained by α‐hydride abstraction from the iridacyclopent‐2‐ene [TpMe2Ir(CH2C(Me)C(Me)C H2)(NCMe)]. Complex A exhibits Brønsted–Lowry acidity at the Ir CH2 and proximal (relative to Ir CH2) methyl sites. The coordination of an extra molecule of acetonitrile to the iridium center initiates the reversible isomerization of the chelating carbon chain of A to the monodentate butadienyl ligand of complex [TpMe2Ir(CHC(Me)C(Me)CH2)(NCMe)2]PF6, which is capable to engage in a water‐promoted C C coupling with the MeCN co‐ligands. The product is an aesthetically appealing bicyclic structure that resembles the hydrocarbon barrelene.  相似文献   

20.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号