首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   

2.
This paper reports the green and in situ preparation of Fe3O4@SiO2‐Ag magnetic nanocatalyst synthesized using safflower (Carthamus tinctorius L.) flower extract without the addition of any stabilizers or surfactants. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4‐nitrophenol (4‐NP), methylene blue (MB) and methyl orange (MO) in an environment‐friendly medium at room temperature. The main factors such as pH, temperature and amount of catalyst influencing the nanocatalyst performance were studied. The apparent rate constants for 4‐NP, MO and MB reduction were calculated, being 0.756 min?1, 0.064 s?1 and 0.09 s?1, respectively. The catalyst was recovered using an external magnet and reused several times with negligible loss of catalytic activity. The as‐synthesized nanoparticles were characterized using powder X‐ray diffraction, transmission electron microscopy, UV–visible, Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, dynamic light scattering and vibrating sample magnetometry.  相似文献   

3.
In this work, we prepared high‐performance and recyclable nanocatalysts that consist of small and well‐dispersed silver nanoparticles (Ag NPs) immobilized onto Cu‐ based metal–organic framework (MOF‐199 s) supported by carboxymethylated cellulose fibers (CCFs). The as‐prepared green nanohybrid catalysts, namely Ag NPs@ MOF‐199 s/CCFs, were characterized using SEM, TEM, XRD and FT‐IR techniques. The catalytic performances showed that Ag NPs@ MOF‐199 s/CCFs catalysts exhibited a very high catalytic efficiency towards the reduction of 4‐nitrophenol to 4‐aminophenol. The enhanced catalytic performances are attributed to the improved dispersity, small particles of Ag NPs stabilized by the MOF‐199 s, and the porous catalyst structures. The introduction of cellulose fiber further facilitates the reuse and sustainability of the nanohybrid catalysts, showing a stable and high reusability (more than 91% of catalytic activity) even after five runs.  相似文献   

4.
Gold nanoparticles supported on thiol‐functionalized reduced graphene oxide (AuNPs@RGO‐SH) were found to be a biocompatible, stable, recyclable heterogeneous catalyst. The catalysts were characterized by field emission scanning electron microscopy (FE‐SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT‐IR), thermal gravimetric analysis (TGA), and X‐ray diffraction spectroscopy (XRD). The obtained catalyst was used in synthesis of tetrahydro‐4H‐chromenes in aqueous media with excellent yields. The catalysts could be easily separated from the reaction mixture and recovered several times without a significant loss of activity.  相似文献   

5.
The heterostructured Ag nanoparticles decorated Fe3O4 Glutathione (Fe3O4‐Glu‐Ag) nanoparticles (NPs) were synthesized by sonicating glutathione (Glu) with magnetite and further surface immobilization of silver NPs on it. The ensuing magnetic nano catalyst is well characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA). The prepared Fe3O4‐Glu‐Ag nanoparticles have proved to be an efficient and recyclable nanocatalyst with low catalyst loading for the reduction of nitroarenes and heteronitroarenes to respective amines in the presence of NaBH4 using water as a green solvent which could be easily separated at the end of a reaction using an external magnet and can be recycled up to 5 runs without any significant loss in catalytic activity. Gram scale study for the reduction of 4‐NP has also being carried out successfully and it has been observed that this method can serve as an efficient protocol for reduction of nitroarenes on industrial level.  相似文献   

6.
The magnetically recyclable graphene oxide-Fe3O4/polyallylamine (PAA)/Ag nanocatalyst was prepared via a green route using Eucalyptus comadulensis leaves extract as both reducing and stabilizing agent. The catalytic activity of this nanocatalyst was investigated for the reduction reaction of methylene blue and methyl orange in the presence of NaBH4 in aqueous medium at room temperature. The prepared nanocatalyst was characterized by different methods such as Fourier transformed infrared spectroscopy, X-ray diffraction, scanning electron microscopy–energy dispersive X–ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, transmission electron microscopy, and UV–visible spectroscopy. The results show that graphene oxide/PAA/Ag nanocatalyst has good activity and recyclability, and can be reused several times without major loss of activity in the reduction process. The apparent rate constants of the methyl orange (MO) and methylene blue (MB) were calculated to be 0.077 s−1 (3 mg of catalyst) and 0.15 s−1 (2 mg of catalyst), respectively.  相似文献   

7.
Agx Pt100−x (x  = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as‐prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO‐Agx Pt100−x catalysts were applied in the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites exhibited excellent catalytic performance in the reduction of 4‐NP with high recyclability for five consecutive runs. The Fe3O4@GO‐Ag75Pt25 nanocomposite exhibited the best catalytic activity with a rate constant as high as 140.6 × 10−3 s−1. The obtained kinetic data were modelled with the Langmuir–Hinshelwood equation. The energy of activation and thermodynamic parameters including enthalpy, entropy of activation and activation Gibbs free energy were calculated.  相似文献   

8.
A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.  相似文献   

9.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, a fast and simple magnetic dispersive solid phase extraction methodology was developed utilizing Ag@magnetite nanoparticles@graphene nanocomposite as an efficient magnetic nanosorbent for preconcentration and determine of five aromatic amines in water samples. The sorbent was characterized by diverse characterization techniques. After the extraction, high‐performance liquid chromatography with UV detection was utilized to analysis the aromatic amines. The effects of different factors on the extraction process were studied thoroughly via design of experiment and desirability function. Detection limits and linear dynamic ranges were obtained in the range of 0.10–0.20 and 0.3–300 μg/L, respectively. The relative standard deviations (n = 5) were in the range of 4.3–6.5%. Eventually, the method was employed for determination of target aromatic amines in various water samples.  相似文献   

11.
In this paper, ternary nanocomposites of Fe3O4/reduced graphene oxide/polyvinyl pyrrolidone (Fe3O4/rGO/PVP) as a novel type of electromagnetic microwave absorbing materials were synthesized by a three-step chemical approach. First, Fe3O4 nanospheres were made by solvent thermal method. Successively, the Fe3O4 particles were assembled with rGO after having activated by para-aminobenzoic acid. PVP grafting and reduction of GO happened simultaneously in the third step. It is found that the electromagnetic absorption (EA) performance of synthesized ternary composites with suitable PVP amount had been significantly enhanced comparing to Fe3O4 and Fe3O4/rGO. Merely 15?wt% low loading in paraffin and thin as 2.8?mm can reach effective EA bandwidth (below ?10 Db) of 11.2?GHz, and the highest reflection loss reached ?67?dB at 10.7?GHz. It was demonstrated that these composites show an effective route to novel microwave absorbing material design.  相似文献   

12.
An environmentally benign magnetic silica‐based nanocomposite (Fe3O4/SBA‐15) as a heterogeneous nanocatalyst was prepared and characterized using Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopies, scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometry and Brunauer–Emmett–Teller multilayer nitrogen adsorption. Its catalytic activity was investigated for the one‐pot multicomponent synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones starting from isatoic anhydride, ammonium acetate and various aldehydes under mild reaction conditions and easy work‐up procedure in refluxing ethanol with good yields. The nanocatalyst can be recovered easily and reused several times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Hybrid materials of Fe3O4‐decorated reduced graphene oxide (Fe3O4‐RGO) and poly(3,4‐ethylenedioxythiophene) (PEDOT) were prepared by poly(ionic liquid)‐mediated hybridization. In this hybrid material, poly(ionic liquid) was found to perform multiple roles for: (1) stabilizing Fe3O4‐RGO against aggregation in the reaction medium, (2) transferring Fe3O4‐RGO nanomaterials from aqueous into organic phase, and (3) associating Fe3O4‐RGO nanomaterials with PEDOT. The hybrid materials of Fe3O4‐RGO with PEDOT showed the lowest surface resistivity of 80 Ω sq?1 at an RGO‐Fe3O4 loading of 1 wt %, and exhibited superparamagnetic behavior with an electromagnetic interference shielding effectiveness of 22 dB. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A novel magnetic nanocomposite of Au-Ag nanoparticles anchored on Fe3O4/graphene oxide spheres (Fe3O4/GO/Au-Ag) was successfully fabricated by the layer-by-layer assembly technique. The prepared Fe3O4/GO/Au-Ag was fully characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), energy-dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Raman spectroscopy. This nanocomposite showed unique catalytic performance for the synthesis of Spiro[indoline-3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine]-pentaone derivatives by the three-component condensation reaction of isatins, barbituric acids and 6-amino uracil at room temperature and in aqueous media. The significant advantages of this protocol include highly stable, easily separable and reusable catalyst, simple operation, environmental friendliness and excellent yields.  相似文献   

15.
Copper(I) oxide nanoparticles supported on magnetic casein (Cu2O/Casein@Fe3O4NPs) has been synthesized as a bio‐supported catalyst and was characterized using powder X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray and Fourier transform infrared spectroscopies, thermogravimetric analysis and inductively coupled plasma optical emission spectrometry. The catalytic activity of the synthesized catalyst was investigated in one‐pot three‐component reactions of alkyl halides, sodium azide and alkynes to prepare 1,4‐disubstituted 1,2,3‐triazoles with high yields in water. The reaction work‐up is simple and the catalyst can be magnetically separated from the reaction medium and reused in subsequent reactions.  相似文献   

16.
Here,Ag_2S nanoparticles on reduced graphene oxide(Ag_2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag_2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag_2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag_2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag_2S NPs is also rich with metal center Ag(δ~+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag_2S NPs;and(3) electron transfer from RGO to Ag_2S NPs,facilitating the uptake of electrons by 4-NP molecules.  相似文献   

17.
A highly efficient, easily recoverable and reusable Fe3O4 magnetic nanoparticle‐supported Cu(I) catalyst has been developed for the synthesis of quinazolinones and bicyclic pyrimidinones. In the presence of supported Cu(I) catalyst (10 mol%), amidines reacted with substituted 2‐halobenzoic acids and 2‐bromocycloalk‐1‐enecarboxylic acids to generate the corresponding N‐heterocycle products in good to excellent yields at room temperature in DMF. In addition, the supported Cu(I) catalyst could be recovered at least 10 times without significant loss of its catalytic activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Ni@diaza crown ether complex supported on magnetic nanoparticle was provided by grafting technique. The catalytic activity of Fe3O4@diaza crown ether@Ni was explored through one‐pot synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and it was used as an efficient and recoverably constant nanocatalyst. FT‐IR, SEM, TEM, XRD, BET, ICP, EDS, and TGA techniques were employed to specify the nanocatalyst. This heterogeneous catalyst demonstrated acceptable recyclability and could be used again several times with no considerable loss of its catalytic activity.  相似文献   

19.
A Pt@three‐dimensional graphene (Pt@3DG) composite hydrogel with a unique porous nanostructure was prepared and used as an efficient, recyclable and robust catalyst for the reduction of 4‐nitrophenol to 4‐aminophenol under mild conditions. The influence of graphene architecture on catalytic activities was comparatively investigated by loading the same amount of Pt on reduced graphene oxide. Pt@3DG exhibits a very high catalytic activity owing to the three‐dimensional macroporous framework with high specific surface area, numerous activation sites and efficient transport pathways. Moreover, catalyst separation can be easily achieved by simple filtration, and the catalyst can be reused for at least five runs, maintaining its high catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Nanomagnetic bisethylferrocene‐containing ionic liquid supported on silica‐coated iron oxide (Fe3O4@SiO2@Im‐bisethylFc [HC2O4]) as a novel catalyst was designed and synthesized. The described catalyst was recycled and used without change in the time and efficiency of the condensation reaction. The Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscopy images, X‐ray diffraction patterns, energy‐dispersive X‐ray spectroscopy, transmission electron microscope and vibrating‐sample magnetometer results confirmed the formation of Fe3O4@SiO2@Im‐bisethylFc [HC2O4] magnetic nanoparticle. The novel bis‐coumarin derivatives were identified by 1H‐NMR, 13C‐NMR, FT‐IR and CHNS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号