首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
From the dark‐purple solution of the Zintl phase KBi in liquid ammonia dark‐blue crystals of the ammonia solvate K6[Bi4](NH3)8 were obtained. In contrast to known Bin polyanions the chemical bond in the anion [Bi4]6– is in accordance with the (8‐N) rule featuring solely Bi–Bi single bonds. [Bi4]6– is a butane‐analog valence compound, and with 6 negative charges per 4 atoms it is the anion with the highest known charge per atom obtained from solution. The planarity of the trans‐[Bi4]6– unit hints at π orbital contributions of the bismuth atoms. The corresponding reactions of the phases K5Bi4 and K3Bi2 in liquid ammonia in the presence of [2.2.2]crypt(4, 7, 13, 16, 21, 24‐hexaoxa‐1, 10‐diazabicyclo‐[8.8.8]hexacosane) lead to the salt [K([2.2.2]crypt)]2[Bi2](NH3)4 with the known electron‐deficient [Bi2]2– polyanion and a Bi=Bi double bond.  相似文献   

2.
Polymeric [Bi]? in KBi?NH3 has planar zigzag chains with two‐connected Bi atoms and metallic properties, whereas KBi, which has helical chains of Bi atoms, is semiconducting. The isomerization of the Bi chain is induced by solvate molecules. In the novel layered solvate structure uncharged [KBi] layers are separated by intercalated NH3 molecules. These layers are a structural excerpt of the iso(valence)electronic CaSi, whose metallic properties arise from the planarity of the zigzag chain of Si atoms. Computational studies support this view, they show an anisotropic metallic behavior along the Bi chain. Electron delocalization is also found in the new cyclic anion [Bi6]4? isolated in K2[K(18‐crown‐6)]2[Bi6]?9 NH3. Although [Bi6]4? should exhibit one localized double bond, electron delocalization is observed in analogy to the lighter homologues [P6]4? and [As6]4?. Both compounds were characterized by single‐crystal X‐ray structure determination.  相似文献   

3.
Na6Sn4Se11 · 22 H2O can be crystallised at –8 °C as yellow‐orange needles from the 1 : 2 H2O/CH3OH mother liquor of a superheated reaction mixture of NaOH(s), Sn and Se. The bicyclic [Sn4Se11]6– anion exhibits crystallographic C2 symmetry and is composed of corner‐bridged SnSe4 tetrahedra. Two opposite tin atoms of an Sn4Se4 8‐membered ring are linked by a common Se atom, thereby affording two 6‐membered boat‐shaped Sn3Se3 rings with a shared Sn–Se–Sn bridging unit. [Sn4Se11]6– thus represents the immediate precursor of the well‐known adamantane‐like [Sn4Se10]4– anion.  相似文献   

4.
To gain more insight into the reactivity of intermetalloid clusters, the reactivity of the Zintl phase K12Sn17, which contains [Sn4]4? and [Sn9]4? cluster anions, was investigated. The reaction of K12Sn17 with gold(I) phosphine chloride yielded K7[(η2‐Sn4)Au(η2‐Sn4)](NH3)16 ( 1 ) and K17[(η2‐Sn4)Au(η2‐Sn4)]2(NH2)3(NH3)52 ( 2 ), which both contain the anion [(Sn4)Au(Sn4)]7? ( 1 a ) that consists of two [Sn4]4? tetrahedra linked through a central gold atom. Anion 1 a represents the first binary Au?Sn polyanion. From this reaction, the solvate structure [K([2.2.2]crypt)]3K[Sn9](NH3)18 ( 3 ; [2.2.2]crypt=4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) was also obtained. In the analogous reaction of mesitylcopper with K12Sn17 in the presence of [18]crown‐6 in liquid ammonia, crystals of the composition [K([18]crown‐6)]2[K([18]crown‐6)(MesH)(NH3)][Cu@Sn9](thf) ( 4 ) were isolated ([18]crown‐6=1,4,7,10,13,16‐hexaoxacyclooctadiene, MesH=mesitylene, thf=tetrahydrofuran) and featured a [Cu@Sn9]3? cluster. A similar reaction with [2.2.2]crypt as a sequestering agent led to the formation of crystals of [K[2.2.2]crypt][MesCuMes] ( 5 ). The cocrystallization of mesitylene in 4 and the presence of [MesCuMes]? ( 5 a ) in 5 provides strong evidence that the migration of a bare Cu atom into an Sn9 anion takes place through the release of a Mes? anion from mesitylcopper, which either migrates to another mesitylcopper to form 5 a or is subsequently protonated to give MesH.  相似文献   

5.
The reaction of diphenyltin dichloride with the binary Zintl phase K4Sn9 in the presence of excess lithium and 18‐crown‐6 in liquid ammonia led to the ammoniate [K(18‐crown‐6)(NH3)2]2Sn2Ph4 ( 1 ). The analogous reaction with K4Ge9 and potassium in the absence of further alkali metal ligands resulted in the compound [K2(NH3)12]Sn6Ph12 ? 4 NH3 ( 3 ). Cs6[Sn4Ph4](NH2)2 ? 8 NH3 ( 2 ) was prepared by reacting diphenyltin dichloride with a surplus of caesium in liquid ammonia. The low‐temperature single‐crystal structure determinations show all compounds to contain phenyl‐substituted polyanions of tin. Compound 1 is built from Sn2Ph anions consisting of Sn dumbbells with two Ph substituents at each Sn‐atom. Compound 2 contains cyclo‐Sn4Ph anions formed by a four‐membered tin ring in butterfly conformation with one Ph substituent at each Sn‐atom in an (all‐trans)‐configuration. Sn6Ph in 3 is a zig‐zag Sn6 chain with two substituents at each of the Sn‐atoms. Both 1 and 3 have molecular counter cations, in the latter case the unprecedented dinuclear potassiumammine complex [K2(NH3)12]2+ is observed. Compound 2 shows a complicated three‐dimensional network of Cs? Sn interactions.  相似文献   

6.
Pnictogenidostannates(IV) with Discrete Tetrahedral Anions: New Representatives (E1)4(E2)2[Sn(E15)4] (with E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) of the Na6[ZnO4] Type and the Superstructure Variant of K4Sr2[SnAs4] The silvery to dark metallic lustrous compounds (E1)4(E2)2[Sn(E15)4] (E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) were prepared from melts of stoichiometric mixtures of the elements. They crystallize in the Na6[ZnO4]‐type structure (hexagonal, space group: P63mc, Z = 2; Na4Ca2[SnP4]: a = 938.94(7), c = 710.09(8) pm; K4Sr2[SnAs4]: a = 1045.0(2), c = 767.0(1) pm; K4Ba2[SnP4]: a = 1029.1(6), c = 780.2(4) pm; K4Ba2[SnAs4]: a = 1051.3(1), c = 795.79(7) pm; K4Ba2[SnSb4]: a = 1116.9(2), c = 829.2(1) pm; K4Ba2[SnBi4]: a = 1139.5(2), c = 832.0(2) pm). The anionic partial structure consists of tetrahedra [Sn(E15)4]8– orientated all in the same direction along [001]. In the cationic partial structure one of the two cation positions is occupied statistically by alkali and alkaline earth metal atoms. Up to now only for K4Sr2[SnAs4] a second modification could be isolated, forming a superstructure type with three times the unit cell volume (hexagonal, space group: P63cm, Z = 6; a = 1801.3(2), c = 767.00(9) pm) and an ordered cationic partial structure.  相似文献   

7.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]⋅(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi Zn Bi]4− polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi Zn Bi]4− anion and the polymeric [(ZnBi4/2)4−] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

8.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

9.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

10.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]?(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi? Zn? Bi]4? polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi? Zn? Bi]4? anion and the polymeric [(ZnBi4/2)4?] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

11.
The compound [K([2.2.2]crypt)]Cs7[Sn9]2(en)3 ( 1 ) was synthesized from an alloy of formal composition KCs2Sn9 by dissolving in ethylenediamine (en) followed by the addition of [2.2.2]crypt and toluene. 1 crystallizes in the orthorhombic space group Pcca with a = 45.38(2), b = 9.092(4), c = 18.459(8) Å, and Z = 4. The structure consists of Cs7[Sn9]2 layers which contain [Sn9]4– anions and Cs+ cations. The layers are separated by [K([2.2.2]crypt)]+ units. In the intermetallic slab (Cs7[Sn9]2) compares the arrangement of pairs of symmetry‐related [Sn9]4– anions with the dimer ([Ge9]–[Ge9])6– in [K([2.2.2]crypt)]2Cs4([Ge9]–[Ge9]), in which the clusters are linked by a cluster‐exo bond. The shortest distance between atoms of such two clusters in 1 is 4.762 Å, e. g. there are no exo Sn‐Sn bonds. The [Sn9]4– anion has almost perfect C4v‐symmetry.  相似文献   

12.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

13.
Carbonate Isostructural Anions [SnX3]5? in the Compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi The metallic shining compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi were prepared from the melt starting from adequate mixtures of the elements and SnO2. They crystallize in the hexagonal system (space group P63/mmc, No. 194, Z = 2) with the lattice constants mentioned in ?Inhaltsübersicht”?. In the structures of the isotypic compounds tin and the main group(V) elements build up trigonal planar anions [SnX3]5? with X = As, Sb, and Bi isostructural to the carbonate anion, oxygen forms isolated O2? ions. The bond lengths Sn? X are significantly shortened with respect to the sums of Pauling covalent radii. The atoms of the units [SnX3]5? are coordinated by alkali metal cations forming trigonal prisms and the O2? anions occupy octahedral holes.  相似文献   

14.
Preparation and Crystal Structure of Ethylenediammonium Selenostannates(IV) and [2 SnSe2 · en]∞ The selenostannates(IV) [enH2]2[Sn2Se6] · en 1 and [enH2][Sn3Se7] · 1/2en 2 have been prepared by the methanolothermal reaction of SnSe2 with ethylenediamine (en) (160°C, 13 bar) in the presence of respectively Se or BaSe. The [Sn2Se6]4? anion in 1 consists of two edgebridged SnSe4 tetrahedra and displays crystallographic Ci symmetry. The crystal structure of 2 contains polyselenostannate(IV) sheet anions [Sn2Se72], for which the basic elements are trigonal SnSe5 bipyramids. Each of the three symmetry independent Sn atoms is linked to the other Sn atoms via Sn? Se? Sn bridges leading to the formation of Sn3Se10 units. Methanolothermal reaction of SnSe2 with en alone yields the edge-bridged chain structure [2 SnSe2 en]∞ 3 , in which each of the Sn atoms is bonded to four Se atoms. Every second Sn atom is also coordinated by an en molecule and displays, therefore, an octahedral geometry. The remaining Sn atoms are coordinated tetrahedrally by Se atoms.  相似文献   

15.
The title compound, (C12H11N3)2[Cd2Cl8], consists of two discrete 2‐(3‐pyridinio)benzimidazolium cations and one [Cd2Cl8]4− anion. The dimeric [Cd2Cl8]4− anion lies about an inversion centre and consists of two distorted [CdCl5] trigonal bipyramids which share a common edge. The two Cd atoms are each coordinated by two μ‐Cl atoms and three terminal Cl atoms, with a Cd·Cd separation of 3.9853 (6) Å. The packing displays two‐dimensional hydrogen‐bonded sheets, which are further linked by C—H·Cl contacts and π–π stacking inter­actions to yield a three‐dimensional network.  相似文献   

16.
The title compound, [Co(C10H8N2)3]2[V4O12]·11H2O, is composed of two symmetry‐related cations containing octahedrally coordinated CoII ions, a centrosymmetric [V4O12]4− anion with an eight‐membered ring structure made up of four VO4 tetrahedra, and 11 solvent water molecules. The CoII cations and vanadate anions are isolated and build cation and anion layers, respectively. In addition, the title compound exhibits a three‐dimensional network through intra‐ and intermolecular hydrogen‐bond interactions between water molecules and O atoms of the anions, and the crystal structure is stabilized mainly by hydrogen bonds.  相似文献   

17.
The characteristic feature of the structure of the title compound, dipotassium bis(sulfito‐κS)mercurate(II) 2.25‐hydrate, is a layered arrangement parallel to (001) where each of the two independent [Hg(SO3)2]2− anions are grouped into centrosymmetric pairs and are surrounded by two K+ cations to give the overall layer composition {K2[Hg(SO3)2]2}2−. The remaining cations and the uncoordinated water molecules are situated between these layers. Within the [Hg(SO3)2]2− anions, the central Hg atoms are twofold coordinated by S atoms, with a mean Hg—S bond length of 2.384 (2) Å. The anions are slightly bent [174.26 (3) and 176.99 (3)°] due to intermolecular O...Hg interactions greater than 2.8 Å. All coordination polyhedra around the K+ cations are considerably distorted, with coordination numbers ranging from six to nine. Although the H atoms of the five water molecules (one with symmetry 2) could not be located, O...O separations between 2.80 and 2.95 Å suggest a system of medium to weak O—H...O hydrogen bonds which help to consolidate the structural set‐up. Differences and similarities between the bis(sulfito‐κS)mercurate(II) anions in the title compound and those in the related salts (NH4)2[Hg(SO3)2] and Na2[Hg(SO3)2]·H2O are discussed.  相似文献   

18.
The title anion was synthesized by heating dimethylformamide (DMF) solution of the known Ni‐centered and Ni(CO)‐capped tin clusters [Ni@Sn9Ni(CO)]3?. The new anion represents the first example of face‐fused nine‐atom molecular clusters. The two clusters are identical elongated tricapped trigonal prisms of nido‐[Sn8Ni(CO)]6? with nickel at one of the capping positions. They are fused along a triangular face adjacent to a trigonal prismatic base and made of two Sn and one Ni atoms. The new anion is structurally characterized by single‐crystal X‐ray diffraction in the compound (K[222‐crypt])4[Sn14Ni(CO)]?DMF. Its presence in solution is corroborated by electrospray mass spectrometry.  相似文献   

19.
The molecule of the title compound, [Sn4(C4H9)8(C7H6NO2)4O2], lies about an inversion centre and is a tetranuclear bis(tetrabutyldicarboxylatodistannoxane) complex containing a planar Sn4O2 core in which two μ3‐oxide O atoms connect an Sn2O2 ring to two exocyclic Sn atoms. Each Sn atom has a highly distorted octahedral coordination. In the molecule, the carboxylate groups of two aminobenzoate ligands bridge the central and exocyclic Sn atoms, while two further aminobenzoate ligands have highly asymmetric bidentate chelation to the exocyclic Sn atoms plus long O...Sn interactions with the central Sn atoms. Each Sn atom is also coordinated by two pendant n‐butyl ligands, which extend roughly perpendicular to the plane of the Sn4O10 core. Only one of the four unique hydrogen‐bond donor sites is involved in a classic N—H...O hydrogen bond, and the resulting supramolecular hydrogen‐bonded structure is an extended two‐dimensional network which lies parallel to the (100) plane and consists of a checkerboard pattern of four‐connected molecular cores acting as nodes. The amine groups not involved in the hydrogen‐bonding interactions have significant N—H...π interactions with neighbouring aminobenzene rings.  相似文献   

20.
The asymmetric unit in the structure of the title compound, [K2(C9H4O9S)(H2O)2]n, consists of two eight‐coordinated KI cations, one 2,4‐dicarboxy‐5‐sulfonatobenzoate dianion (H2SBTC2−), one bridging water molecule and one terminal coordinated water molecule. One KI cation is coordinated by three carboxylate O atoms and three sulfonate O atoms from four H2SBTC2− ligands and by two bridging water molecules. The second KI cation is coordinated by four sulfonate O atoms and three carboxylate O atoms from five H2SBTC2− ligands and by one terminal coordinated water molecule. The KI cations are linked by sulfonate groups to give a one‐dimensional inorganic chain with cage‐like K4(SO3)2 repeat units. These one‐dimensional chains are bridged by one of the carboxylic acid groups of the H2SBTC2− ligand to form a two‐dimensional layer, and these layers are further linked by the remaining carboxylate groups and the benzene rings of the H2SBTC2− ligands to generate a three‐dimensional framework. The compound displays a photoluminescent emission at 460 nm upon excitation at 358 nm. In addition, the thermal stability of the title compound has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号