首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the purpose of carrying out pharmacokinetic interaction studies ofnberberine (BBR) and fenofibrate (FBT), an UPLC‐MS/MS method has been developed and validated. The analytes, BBR and fenofibric acid (FBA, metabolite of FBT) and the internal standard, tetrahydropalmatine, were extracted with dichloromethane–diethyl ether (3:2, v/v) and separated on an Agilent Eclipse XDB C18 column using a mobile phase composed of acetonitrile and water. With positive ion electrospray ionization, the analytes were monitored on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. Linear calibration curves were obtained over the concentration ranges of 0.1–100.0 ng/mL for BBR and 10.0–50,000.0 ng/mL for FBA. For BBR and FBA, the intra‐ and inter‐day precisions were <11.5 and 11.9%, respectively. The accuracy was within 11.7% and 11.3%. The mean recoveries of BBR at three concentrations of 0.2, 20.0, 80.0 ng/mL were >85.6%, and those of FBA at three concentrations of 20.0, 2500.0, 40,000.0 ng/mL were >87.9%. Consequently, the proposed method was applied to the pharmacokinetic interaction study of FBT combined with BBR after oral administration in rats and was proved to be sensitive, specific and reliable to analyze BBR and FBA in biological samples simultaneously. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An improved, precise and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the quantification of trimetazidine, using trimetazidine‐d8 as the internal standard (IS). Interference owing to plasma phospholipids during sample preparation was overcome using a hybrid solid‐phase extraction–phospholipid ultra cartridge. The mean extraction recovery of trimetazidine (98.66%) and trimetazidine‐d8 (97.63%) from spiked plasma was consistent and reproducible. Chromatographic analysis was performed on a UPLC Ethylene Bridged Hybrid (BEH) C18 (50 × 2.1 mm, 1.7 μm) column with isocratic elution using acetonitrile–5 mm ammonium formate, pH 3.5 (40:60, v/v) as the mobile phase. The parent → product ion transitions for trimetazidine (m/z 267.1 → 181.1) and trimetazidine‐d8 (m/z 275.2 → 181.1) were monitored on a triple quadrupole mass spectrometer with electrospray ionization functioning in the positive multiple reaction monitoring mode. The linearity of the method was established in the concentration range of 0.05–100 ng/mL for trimetazidine. The intra‐batch and inter‐batch accuracy and precision (CV) were 97.3–103.1 and 1.7–5.3%, respectively. Qualitative and quantitative assessment of matrix effect showed no interference of endogenous/exogenous components. The developed method was used to measure plasma trimetazidine concentration for a bioequivalence study with 12 healthy subjects.  相似文献   

3.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of the present study was to evaluate the contribution of metabolites to drug–drug interaction and drug–herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α‐hydroxy metoprolol (HM), O‐desmethyl metoprolol (ODM) and N‐desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration–time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4‐catalyzed midazolam metabolism and CYP2D6‐catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug–drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid, sensitive, and selective liquid chromatography with tandem mass spectrometry method was developed and fully validated for the simultaneous quantification of arotinolol and amlodipine in rat plasma. Two internal standards were introduced with metoprolol as the internal standard of arotinolol and (S)‐amlodipine‐d4 as the internal standard of amlodipine. The analytes were isolated from 50.0 μL plasma samples by a simple protein precipitation using acetonitrile. The chromatographic separation was achieved in 5 min on a C18 column. The mobile phase consisted of phase A 5% methanol and phase B 95% methanol (both containing 0.5% formic acid and 5 mM ammonium acetate) and was delivered in gradient elution at 0.300 mL/min. Quantification was performed in multiple reaction monitoring mode with the transition m/z 372.1 → 316.1 for arotinolol, m/z 268.2 → 116.2 for metoprolol, m/z 409.1 → 238.1 for amlodipine and m/z 413.1 → 238.1 for (S)‐amlodipine‐d4. Linearity was obtained over the range of 0.200–40.0 ng/mL for arotinolol (r= 0.9988) and 0.500–100 ng/mL for amlodipine (r= 0.9985) in rat plasma. The validated data have met the acceptance criteria in FDA guideline. This method was successfully applied to a pharmacokinetic interaction study in rats, and the results indicated that there was no significant drug–drug interaction between arotinolol and amlodipine.  相似文献   

6.
Xuanmai Ganjie Granules (XMGJ), a widely used Chinese herbal formula in the clinic, is used for treatment of sore throats and coughs. Despite the chemical constituents having been clarifying by our previous studies, both of the metabolism and pharmacokinetic studies of XMGJ are unclear. This study aimed to explore the disposition process of XMGJ in vivo. A sensitive and selective ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry (UPLC–Q‐TOF–MS) method was developed to analyze the absorbed components and metabolites in rat plasma and urine after oral administration of XMGJ. A total of 42 absorbed components, including 16 prototype compounds and 26 metabolites, were identified or tentatively characterized in rat plasma and urine after oral administration of XMGJ. Moreover, the pharmacokinetic studies of five compounds of XMGJ were investigated using ultra‐high liquid chromatography with tandem mass spectrometry method. The results indicated that liquiritin, harpagoside, glycyrrhetic acid, liquiritigenin, formononetin and their metabolites might be the major components involved in the pharmacokinetic and metabolism process of XMGJ. This research showed a comprehensive investigation of XMGJ in vivo, which could provide a meaningful basis for further material basis and pharmacological as well as toxicological research.  相似文献   

7.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Daphne genkwa Sieb.et Zucc. is a well‐known medicinal plant. This study was designed to apply the ultra‐high performance liquid chromatography system to establish a quality control method for D. genkwa. Data revealed that there were 15 common peaks in 10 batches of D. genkwa Sieb. Et Zucc. (Thymelaeaceae) from different provinces of China. On this basis, the fingerprint chromatogram was established to provide references for quality control. Afterwards, the chemical constitutions of these common peaks were analyzed using the UPLC‐Q‐TOF‐MS system and nine of them were identified. In addition, LPS‐stimulated RAW264.7 murine macrophages and DPPH assay were used to study the anti‐inflammatory and anti‐oxidation effects of D. genkwa . Then the fingerprint–efficacy relationships between UPLC fingerprints and pharmacodynamic data were studied with canonical correlation analysis. Analysis results indicated that the anti‐inflammatory and anti‐oxidation effects differed among the 10 D. genkwa samples owing to their inherent differences of chemical compositions. Taken together, this research established a fingerprint–efficacy relationship model of D. genkwa plant by combining the UPLC analytic technique and pharmacological research, which provided references for the detection of the principal components of traditional Chinese medicine on bioactivity.  相似文献   

9.
A simple, high‐throughput and highly sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous estimation of rosuvastatin and free ezetimibe. Liquid–liquid extraction was carried out using methyl‐tert butyl ether after prior acidification from 300 μL human plasma. The recovery for both the analytes and their deuterated internal standards (ISs) ranged from 95.7 to 99.8%. Rosuvastatin and ezetimibe were separated on Symmetry C18 column using acetonitrile and ammonium formate buffer, pH 3.5 (30:70, v/v) as the mobile phase. The analytes were well resolved with a resolution factor of 3.8. Detection and quantitation were performed under multiple reaction monitoring using ESI(+) for rosuvastatin (m/z 482.0 → 258.1) and ESI(−) for ezetimibe (m/z 407.9 → 271.1). A linear response function was established in the concentration ranges of 0.05–50.0 ng/mL and 0.01–10.0 ng/mL for rosuvastatin and ezetimibe, respectively, with correlation coefficient, r2 ≥ 0.9991. The IS‐normalized matrix factors for the analytes ranged from 0.963 to 1.023. The developed method was successfully used to compare the pharmacokinetics of a fixed‐dose combination tablet of rosuvastatin‐ezetimibe and co‐administered rosuvastatin and ezetimibe as separate tablets to 24 healthy subjects. The reliability of the assay was also assessed by reanalysis of 115 subject samples.  相似文献   

10.
A rapid and sensitive gas chromatography with mass spectrometry method for the determination of venlafaxine in rat plasma has been developed and applied to a drug–drug interaction study of fluoxetine on pharmacokinetics of venlafaxine in rats. Rat plasma was spiked with 2% aqueous ammonia before subjected to preactivated C18 solid‐phase extraction columns and eluted with methanol. No endogenous interferences were observed under optimal condition. The calibration curve was linear (R 2 = 0.9994) in the range of 10–1000 ng/mL. The quantification limit of venlafaxine in rat plasma was 10 ng/mL. The accuracy was in the range of 85–110%, and the extraction recovery was no less than 50%. Both the intra‐ and interday precision were 5.0–10.7%. The concentration–time curve showed that plasma concentrations of the coadministration group (group B) were higher than that of single dose group (group A). Both values of C max (0.069 mg/L) and AUC0→∞ (0.291 mg h/L) in group B were statistically greater than that of C max (0.046 mg/L) and AUC0→∞ (0.181 mg·h/L) in group A (< 0.05). The results indicated that a significant effect of fluoxetine was shown on the pharmacokinetics of venlafaxine, suggesting that drug–drug interactions are of concern for the treatment of depression with the combined use of venlafaxine and fluoxetine.  相似文献   

11.
12.
Propafenone is a potent antiarrhythmic agent; clinically propafenone has been used for a number of cardiac arrhythmias because it possesses multiple modes of action, via beta adrenergic receptor blockade and calcium antagonistic activity. Propafenone (PPF) exhibits extensive saturable presystemic biotransformation (first‐pass effect) resulting in two active metabolites: 5‐hydroxypropafenone (5‐OH PPF) formed by CYP2D6 and N‐ depropylpropafenone (NDP) formed by both CYP3A4 and CYP1A2 enzymes. A specific and sensitive LC–MS/MS method was developed and validated for quantitation of PPF, 5‐OH PPF and NDP using turboion spray in a positive ion mode. A solid‐phase extraction was employed for the extraction from human plasma. Chromatographic separation of analytes was achieved using an ACE‐5 C8 (50 × 4.6 mm) column with a gradient mobile phase comprising ammonium acetate containing 0.01% TFA in purified water and acetonitrile. The retention times achieved were 1.36, 1.23, 1.24 min and 1.34 min for PPF, 5‐OH PPF, NDP and IS (carbamazepine), respectively. Quantitation was performed by monitoring multiple reaction monitoring transition pairs of m /z 342.30 to m /z 116.20, m /z 358.30 to m /z 116.20, m /z 300.30 to m /z 74.20 and m /z 237.20 to m /z 194.10, respectively. The developed method was validated for various parameters. The calibration curves of PPF and 5‐OH PPF showed linearity from 1 to 500 ng/mL, with a lower limit of quantitation of 1.0 ng/mL and for NDP linearity from 0.1 to 25 ng/mL with a lower limit of quantitation of 0.1 ng/mL. The bias and precision for intra‐ and‐inter batch assays were <10 and 5%, respectively. The developed assay was used to evaluate pharmacokinetic properties of propafenone and its major metabolites in healthy human subjects.  相似文献   

13.
Isochamaejasmin, neochamaejasmin A and daphnoretin derived from Stellera chamaejasme L. are important because of their reported anticancer properties. In this study, a sensitive UPLC‐MS/MS method for the determination of isochamaejasmin, neochamaejasmin A and daphnoretin in rat plasma was developed. The analyte and IS were separated on an Acquity UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) using gradient elution with the mobile phase of aqueous solution (methanol–water, 1:99, v/v, containing 1 mm formic acid) and organic solution (methanol–water, 99:1, v/v, containing 1 mm formic acid) at a flow rate of 0.3 mL/min. Multiple reaction monitoring mode with negative electrospray ionization interface was carried out to detect the components. The method was validated in terms of specificity, linearity, accuracy, precision, stability, etc. Excellent linear behavior was observed over the certain concentration ranges with the correlation coefficient values >0.99. Intra‐ and inter‐day precisions (RSD) were <6.7% and accuracy (RE) ranged from −7.0 to 12.0%. The validated method was successfully applied to investigate the pharmacokinetics of three chemical ingredients after oral administration of S. chamaejasme L. extract to rats.  相似文献   

14.
Gelsenicine is an indole alkaloid isolated from Gelsemium elegans Benth. In recent years, the role of G. elegans Benth preparations in anti‐tumor, analgesic, dilatation and dermatological treatment has attracted attention, and it has been applied clinically, but it is easy to cause poisoning with its use. An UPLC–MS/MS method was established to determine the gelsenicine in mouse blood, and the pharmacokinetics of gelsenicine after intravenous (0.1 mg/kg) and intragastric (0.5 and 1 mg/kg) administration was studied. Deltalin was used as internal standard; a UPLC BEH C18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 10 mmol/L ammonium acetate (0.1% formic acid) with a gradient elution flow rate of 0.4 mL/min. Multiple reaction monitoring mode was used for quantitative analysis of gelsenicine in electrospray ionization positive interface. Proteins from mouse blood were removed by acetonitrile precipitation. A validation of this method was performed in accordance with the US Food and Drug Administration guidelines. In the concentration range of 0.05–100 ng/mL, the gelsenicine in the mouse blood was linear (r > 0.995), and the lower limit of quantification was 0.05 ng/mL. In the mouse blood, the intra‐day precision RSD was <12%, the inter‐day precision RSD was <15%, the accuracy ranged from 89.8 to 112.3%, the average recovery was >76.8%, and the matrix effect was between 103.7 and 108.4%, which meet the pharmacokinetic research requirements of gelsenicine. The UPLC–MS/MS method is sensitive, rapid and selective, and has been successfully applied to the pharmacokinetic study of gelsenicine in mice. The absolute bioavailability of gelsenicine is 1.13%.  相似文献   

15.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α‐hydroxymetoprolol (HMT) and O‐desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC‐C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post‐column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42–7000 ng/mL for MET, 2.05‐4200 ng/mL for HMT and 1.95‐4000 ng/mL for DMT. The analytical method was successfully applied to herb–drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Macitentan is an endothelin receptor antagonist commonly used in the treatment of pulmonary arterial hypertension (PAH). A novel, rapid, simple and sensitive UPLC–MS/MS method was developed and validated for pharmacokinetic study and the determination of macitentan in PAH patients. Macitentan and bosentan, which are used as internal standards, were detected using atmospheric pressure chemical ionization in positive ion and multiple reaction monitoring mode by monitoring the mass transitions m/z 589.1 → 203.3 and 552.6 → 311.5, respectively. Chromatographic separation was performed on a reverse‐phase C18 column (5 μm, 4.6 × 150 mm) with an isocratic mobile phase, which consisted of water containing 0.2% acetic acid–acetonitrile (90:10, v/v) at a flow rate of 1 mL/min. Retention times were 1.97 and 1.72 min for macitentan and IS, respectively. The calibration curve with high correlation coefficient (0.9996) was linear in the range 1–500 ng/mL. The lower limit of quantitation and average recovery values were determined as 1 ng/mL and 89.8%, respectively. This method is the first UPLC–MS/MS method developed and validated for the determination of macitentan from human plasma. The developed analytical method was fully validated for linearity, selectivity, specificity, accuracy, precision, sensitivity, stability, matrix effect and recovery according to US Food and Drug Administration guidelines. The developed method was applied successfully for pharmacokinetic study and the determination of macitentan in PAH patients.  相似文献   

17.
The aim of this study was to develop a reliable UPLC–MS/MS assay for accurate quantification of mycophenolic acid (MPA) and its glucuronide conjugates in human plasma. Plasma proteins were precipitated with acetonitrile and the chromatographic separation was achieved on a C18 column with a gradient elution. The detection was performed by a triple quadrupole mass spectrometer in the positive electrospray ionization and multiple reaction monitoring mode. Linearity of the assay was demonstrated over the range of 20–10,000 ng/mL for MPA and MPA glucuronide (MPAG), and 2–1000 ng/mL for acyl MPA glucuronide in human plasma. The assay was precise and accurate with coefficient of variation and bias <15%. MPA and MPAG were stable at 25 °C up to 1 day in both heparin‐ and EDTA‐treated blood. In heparin‐ and EDTA‐plasma, MPA and MPAG were stable for at least 1 week at 25 and 4 °C, and 1 month at ?20 °C. However, 99% acyl MPA glucuronide degraded in both heparin‐ and EDTA‐blood as well as plasma when stored at room temperature for 1 day. All the analytes remained stable for at least 3 months in acidified EDTA‐plasma at ?80 °C. The assay was successfully applied on patients post hematopoietic stem cell transplantation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this study is to establish and validate a UPLC–MS/MS approach to determine eight flavonoids in biological samples and apply the method to pharmacokinetic study of Fu‐Zhu‐Jiang‐Tang tablet. A Waters BEH C18 UPLC column was employed with methanol/0.1% formic acid–water as mobile phases. The mass analysis was carried out in a triple quadrupole mass spectrometer using multiple reaction monitoring with negative scan mode. A one‐step protein precipitation by methanol was used to extract the analytes from blood. Eight major flavonoids were selected as markers. Our results showed that calibration curves for 3′‐hydroxypuerarin, mirificin, puerarin, 3′‐methoxypuerarin, daidzin, rutin, astragalin and daidzein displayed good linear regression (r 2 > 0.9986). The intra‐day and inter‐day precisions (RSD) of the eight flavonoids at high, medium and low levels were <8.03% and the bias of the accuracies ranged from −5.20 to 6.75%.The extraction recoveries of the eight flavonoids were from 91.4 to 100.5% and the matrix effects ranged from 89.8 to 103.8%. The validated approach was successfully applied to a pharmacokinetic study in Sprague–Dawley rats after oral administration of FZJT tablet. Double peaks were emerged in curves of mean plasma concentration for 3′‐methoxypuerarin, which was reported for the first time.  相似文献   

19.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats.  相似文献   

20.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号