首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

2.
A unique hexanuclear zinc(II) ( 1 ) and two mononuclear copper(II) ( 2 and 3 ) complexes anchored with imino phenol ligand HL 1 and HL 2 were synthesized with good yield and purity (where HL 1  = 4‐tert‐butyl‐2,6‐bis((mesitylimino)methylphenol and HL 2   =  5‐tert‐butyl‐2‐hydroxy‐3‐((mesitylimino)methyl)benzaldehyde). These complexes were characterized by utilizing various spectroscopic protocols like NMR, FTIR, UV as well as ESI‐Mass spectrometry, elemental analysis and single crystal X‐ray diffraction studies. Their potential to bind calf thymus DNA (CT‐DNA) was tested utilizing different techniques such as UV–visible and fluorescence spectroscopy. The experiment implies that they interact with CT‐DNA via non‐intercalative mode with moderate capabilities (Kb ~ 104 M?1). On the other hand, these complexes have high capabilities to quench the fluorescence of bovine serum albumin (BSA) following the static pathway. In addition, they are active catalysts for the oxidation reaction of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to 3,5‐di‐tert‐butylquinone (3,5‐DTBQ) under aerobic condition. From the recorded EPR signals of all complexes, it has been concluded that the oxidation reaction proceeds via ligand oriented radical pathway instead of metal based redox participation. Kinetic studies using 1 – 3 indicate that it follows Michaelis–Menten type of equation with moderate to high turnover number (kcat). Apart from these aspects, complexes 1 – 3 were screened for their cytotoxic behavior towards HeLa cells (human cervical carcinoma) and found quite active with comparable IC50 values to cisplatin.  相似文献   

3.
A mononuclear iron(II) complex, [Fe(phen)3]Cl2 ( 1 ) (phen =1,10‐phenanthroline), has been synthesized in crystalline phase and characterized using various spectroscopic techniques including single crystal X‐ray diffraction. Crystal structure analysis revealed that 1 crystallizes in a monoclinic system with C2/m space group. Complex 1 acts as a functional model for a biomimetic catalyst promoting the aerobic oxidation of 3,5‐di‐tert ‐butylcatechol (3,5‐DTBC) through radical pathways with a significant turnover number (k cat =3.55 × 103 h−1) and exhibits catechol dioxygenase activity towards the same 3,5‐DTBC substrate at room temperature in oxygen‐saturated ethanol medium. The existence of an isobestic point at 610 nm from spectrophotometric data indicates the presence of Fe3+ −3,5‐DTBC adduct favouring an enzyme–substrate binding phenomenon. Upon stoichiometric addition of 3,5‐DTBC pretreated with two equivalents of triethylamine to the iron complex, two catecholate‐to‐iron(III) ligand‐to‐metal charge transfer bands (575 and 721 nm) are observed and the in situ generated catecholate intermediate reacts with dioxygen (k obs =9.89 × 10−4 min−1) in ethanol medium to afford exclusively intradiol cleavage products along with a small amount of benzoquinone, and a small amount of extradiol cleavage products, which provide substantial evidence for a substrate activation mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A series of homo‐ and hetero‐trinuclear cobalt(II) complexes [Co3(L)(OAc)2(CH3CH2OH)(H2O)] ( 1 ), [Co2Ba(L)(OAc)2] ( 2 ) and [Co2Ca(L)(OAc)2]·CHCl3 ( 3 ), containing an acyclic naphthalenediol‐based ligand H4L were synthesized. All the three complexes were characterized by elemental analyses, IR, UV – vis spectra and single crystal X‐ray diffraction analyses. Comparative studies of the structures and spectroscopic properties are carried out on these complexes. All of the complexes show catechol oxidase activities in MeCN. Using UV – vis spectroscopy, we monitored the aerial oxidation of 3,5‐di‐tert ‐butylcatechol (3,5‐DTBCH2) to 3,5‐di‐tert ‐butylquinone (3,5‐DTBQ), which confirms the essential role of these complexes in enhancing the catalytic reaction.  相似文献   

5.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

6.
Electrochemical transformations and antioxidant activity of some Schiff bases 1 – 5 containing ferrocenyl group and (thio‐)phenol, catechol fragments were investigated. Compounds under investigation are: 2‐(ferrocenylmethylene)amino)phenol ( 1 ), 2‐((ferrocenylmethylene)amino)‐4,6‐di‐tert‐butylphenol ( 2 ), 2‐((ferrocenylmethylene)amino)‐thiophenol ( 3 ), 3‐((ferrocenylmethylene)hydrazonomethyl)‐4,6‐di‐tert‐butylcatechol ( 4 ) and 2‐((3,5‐di‐tert‐butyl‐4‐hydroxybenzylidene)amino)thiophenol ( 5 ). In a case of compounds 1 – 3 it has shown that the sequence of electrochemical transformations leads to the products of intramolecular cyclization – 2‐ferrocenylbenzoxazole (benzothiazole). o‐Quinone formation occurs during the electrochemical oxidation of catechol‐ferrocene 4 at the first anode stage. Electrochemical oxidation of the redox‐active fragments in Schiff bases 1–4 can be achieved indirectly at a lower potential corresponding to the oxidation of ferrocenyl moiety, consequently these substances can reveal more pronounced antioxidant properties. The antioxidant activities of the compounds were evaluated using 2,2′‐diphenyl‐1‐picrylhydrazyl radical (DPPH) assay, the reaction of 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH) induced glutathione depletion (GSH), the oxidative damage of the DNA, the process of lipid peroxidation of rat (Wistar) brain homogenates in vitro. The compounds 1–4 in the antioxidant assays show effectiveness comparable with standard antioxidants (vitamin E, Trolox) and in some parameters superior to them. In the reaction of AAPH with the glutathione compounds 2–5 have a more pronounced protective activity than Trolox. Compounds 1–5 inhibit AAPH induced oxidation damage of the DNA. The more effective inhibitors of the lipid peroxidation process in vitro are molecules containing the bulky tert‐butyl groups: 2 and 4 and Schiff base 3 .  相似文献   

7.
The dinuclear Cu(II) complexes [Cu2(L1)2(mb)]?ClO4 ( 1 ) and [Cu2(L2)2(mb)]?ClO4 ( 2 ) (HL1 = 2‐[(2‐diethylaminoethylimino)methyl]phenol; HL2 = 2‐[1‐(2‐diethylaminoethylimino)propyl]phenol; mb = 4‐methylbenzoate) were synthesized and characterized using X‐ray crystal structure analysis and spectroscopic methods. Complexes 1 and 2 are dinuclear with distorted square pyramidal Cu (II) geometries, where Schiff base coordinates with tridentate (N,N,O) chelating mode and mb bridges two metal centres. Optimized structures and photophysical properties of ligands and complexes were calculated using density functional theory and time‐dependent density functional theory methods using B3LYP functional with 6‐31G (d,p) and LanL2MB basis sets. Interactions of the complexes with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using UV–visible absorption and fluorescence spectroscopies and the calculated values of association constants (M?1) are 1.7 × 105 ( 1 –BSA), 5.7 × 105 ( 2 –BSA), 1.6 × 105 ( 1 –HSA) and 6.9 × 105 ( 2 –HSA). Interactions of the complexes with calf thymus DNA were also investigated and the binding affinities are 1.4 × 105 and 1.6 × 105 M?1 for 1 and 2 , respectively. Both complexes catalytically oxidize 3,5‐di‐tert‐butylcatechol to 3,5‐di‐tert‐butylbenzoquinone in the presence of molecular oxygen.  相似文献   

8.
An imidazolate-bridged copper(II)-zinc(II) complex (Cu(II)-diethylenetriamino-μ-imidazolato-Zn(II)-tris(2-aminoethyl)amine perchlorate (denoted as “Cu,Zn complex”) and a simple copper(II) complex (Cu(II)-tris(2-aminoethyl) amine chloride (“Cu-tren”) were prepared and immobilised on silica gel (by hydrogen or covalent bonds) and montmorillonite (by ion exchange). The immobilised substances were characterised by FT-IR spectroscopy and their thermal characteristics were also studied. The obtained materials were tested in two probe reactions: catalytic oxidation of 3,5-di-tert-butyl catechol (DTBC) (catecholase activity) and the decomposition of hydrogen peroxide (catalase activity). It was found that the catecholase activity of the Cu,Zn complex increased considerably upon immobilization on silica gel via hydrogen bonds and intercalation by ion exchange among the layers of montmorillonite. The imidazolate-bridged copper(II)-zinc(II) complex and its immobilised versions were inactive in hydrogen peroxide decomposition. The Cu(II)-tris(2-aminoethyl)amine chloride complex displayed good catalase activity; however, immobilisation could not improve it.  相似文献   

9.
3‐3′‐Benzylidenebis[4‐hydroxycoumarin] or 4‐nitro,3‐3′‐benzylidenebis[4‐hydroxycoumarin] or 4‐methoxy,3‐3′‐benzylidenebis[4‐hydroxycoumarin] and their complexes with Cu(II), Fe(II) and Fe(III) were synthesized and characterized using 1H‐NMR, 13C‐NMR, IR spectra, electronic spectra, magnetic measurements and elemental analyses. The ligands, metal salts, complexes, control and standard drug were tested for their in‐vitro antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Serratia marcescens. The metal complexes exhibit good activity against bacterial strains compared with parental compounds and moderate compared with the standard drug (ciprofloxacin). In‐vitro DNA‐binding activity was carried out using agarose gel electrophoresis. The synthesized compounds show effective DNA‐binding activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
New palladium(II) complexes, [Pd(PPh3)L] ( 2 ) and [Pd(AsPh3)L] ( 3 ), were synthesized using 4‐hydroxybenzoic acid (3‐ethoxy‐2‐hydroxybenzylidene)hydrazide ( 1 ) ligand (H2L), and characterized using various physicochemical techniques. The molecular structures of 2 and 3 were determined using single‐crystal X‐ray diffraction, which reveals a square planar geometry around the palladium(II) metal ion. In vitro DNA binding studies were conducted using UV–visible absorption spectroscopy, emission spectroscopy, cyclic voltammetry and viscosity measurements, which suggest that the metal complexes act as efficient DNA binders. The interaction of ligand H2L and complexes 2 and 3 with bovine serum albumin (BSA) was investigated using UV–visible and fluorescence spectroscopies. Absorption and emission spectral studies indicate that complexes 2 and 3 interact with BSA protein more strongly than the parent ligand. The free radical scavenging potential of all the synthesised compounds ( 1 – 3 ) was also investigated under in vitro conditions. In addition, the in vitro cytotoxicity of the complexes to tumour cells lines (HeLa and MCF‐7) was examined using the MTT assay method.  相似文献   

11.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Synthesis and Analytical Characterization of Functionalized β‐Hydroxydithiocinnamic Acids and their Esters. Complex Chemistry towards Nickel(II), Palladium(II), and Platin(II) Starting from silyl‐protected 4‐hydroxy acetophenone ( 1 ) the 1,1‐ethenedihiolato complexes 3 – 5 were synthesised using carbon disulfide and potassium‐tert‐butylate as a base. After being deprotected, the resulting 4‐hydroxy‐substituted complexes 6 – 8 were esterified with DL‐α‐lipoic acid to obtain the compounds 9 – 11 . The resulting complexes were characterized using NMR spectroscopy, mass spectrometry and IR spectroscopy. 3‐substituted β‐hydroxydithiocinnamic acid methyl ester ( 12 ) was obtained via an analogous path of reaction using silyl‐protected 3‐hydroxy acetophenone ( 2 ), carbon disulfide and methyl iodide. After removing of the silyl group the resulting hydroxy group was esterified with DL‐α‐lipoic acid. Using the dithioacid ester 14 as a ligand the NiII ( 15 ), PdII ( 16 ) and PtII ( 17 ) [O,S] complexes were obtained.  相似文献   

13.
A series of copper (II) ( 1 and 3 ) and cobalt (II/III) ( 2 , 4 and 5 ) complexes comprising different imino‐phenolate ligands DCH , DTH and DBH 2 (where DCH = 2,4‐dichloro‐6‐((mesitylimino)methyl)phenol, DTH = 2,4‐di‐tert‐butyl‐6‐((mesitylimino)methyl) phenol and DBH 2 = 2,4‐dibromo‐6‐((mesitylimino)methyl)phenol) have been prepared with excellent yield and high purity. By utilizing different spectroscopic tools such as UV–visible, electrospray ionization (ESI)‐mass, Fourier‐transform infrared (FTIR) spectrometry and elemental analysis, the prepared complexes ( 1 – 5 ) were thoroughly characterized. The molecular structure of the synthesized complexes was ascertained by using single‐crystal X‐ray diffraction studies (SCXRDs). The experiment reveals that Complexes 1 – 5 bind to calf thymus DNA (CT‐DNA) through non‐intercalative way with good interacting abilities. However, 1 – 5 are excellent quenchers of the fluorescence intensity of bovine serum albumin (BSA) following the static pathway. Additionally, they had shown remarkable cytotoxic potential against MCF‐7 (mammary gland adenocarcinoma) and A549 (lung adenocarcinoma) cell lines. The IC50 values associated with these complexes were much lower than the conventional drug cisplatin. Apoptosis‐induced cell death was confirmed from the DNA fragmentation studies and Hoechst 33342 staining. The 2′,7′‐dichlorofluorescein diacetate (DCFDA) assay indicates that the complex mediated reactive oxygen species (ROS) generation is accountable for governing the apoptosis mechanism via oxidative cell distress. Apart from these studies, by carrying out density functional theory (DFT) method, highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap calculations and optimized structures of the synthesized complexes were accomplished.  相似文献   

14.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

15.
The synthesis of three bis[(tert‐butoxy)carbonyl]‐protected (tetramine)dichloroplatinum complexes 2a – c of formula cis‐[PtCl2(LL)] and of their cationic deprotected analogs 3a – c and their evaluation with respect to in vitro cytotoxicity, intramolecular stability, DNA binding, and cellular uptake is reported. The synthesis comprises the complexation of K2[PtCl4] with di‐N‐protected tetramines 1a – c to give 2a – c and subsequent acidolysis, yielding 3a – c . The cytotoxicity of the complexes is in direct relation to the length of the polyamine. Complexes 3a – c display a significant higher affinity for CT DNA as well as for cellular DNA in A2780 cells than cisplatin.  相似文献   

16.
Cu(II), Ni(II) and Zn(II) complexes of (E)‐2‐((2,4‐dihydroxybenzylidene)amino)‐3‐(1H‐indol‐3‐yl)propanoic acid Schiff base ( L ) were synthesized and characterized by various spectral methods. ESI‐MS was used to confirm the structure of synthesized compounds. Molecular geometries of the complexes were predicted by optimizing the structure by DFT/B3LYP method with LANL2DZ basis set in the gas phase. The interaction of the metal complexes with CT‐DNA and BSA protein has been examined by UV‐vis, fluorescence and viscometer titrations reveal that the complexes bind to DNA through intercalation binding mode. The copper complexes exhibit effective cleavage of pUC19 DNA by the oxidative mechanism. The synthesized compounds screened for their antibacterial activities against various bacteria strains exhibit the L and copper complex show potential activity against Pseudomonas aeruginosa and Escherichia coli, respectively. Subsequently, molecular docking studies were performed on to understand the binding of the compounds with DNA, BSA and bacteria.  相似文献   

17.
Mn(II), Co(II), Ni(II) and Cu(II) and N,N‐bis(3,5‐di‐tert‐butylsalicyidene)‐2,2‐dimethyle‐1,3‐diaminopropane complexes have been synthesized in Y zeolite cavity by the reaction of ion‐exchanged metal ions with the flexible ligand molecules. The host‐guest materials obtained have been characterized by elemental analysis, XRD, surface area, pore volume, TGA, FT‐IR and UV‐Vis techniques. Analysis of data indicates that formation of complexes in the pores Y zeolite without affecting the zeolite framework structure. Also, we report the oxidation of cyclohexanol catalyzed by host‐guest catalyst with tert‐buthyl hydrogen peroxide as oxygen donor. The activity of benzyl alcohol oxidation decreases in the series‐[Co(L)]/NaY > [Cu(L)]/NaY > [Mn(L)]/NaY > [Ni(L)]/NaY and the percent of product completely depend to catalyst. Zeolite complexes are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts.  相似文献   

18.
A series of Cu(II), Co(II), and Ni(II) complexes of bis-(3,5-dimethyl-pyrazolyl-1-methyl)-(3-phosphanyl-propyl)-amine C15H26N5P (1), prepared from 3-aminopropylphosphine and 1-hydroxymethyl-3,5-dimethylpyrazole were characterized. The nature of bonding and the geometry of the complexes have been deduced from elemental analysis, infrared, electronic, 1H NMR, 31P NMR spectra, magnetic susceptibility, and conductivity measurements. The studies indicate octahedral geometry for nickel complex and square pyramidal geometry for copper and cobalt complexes. The EPR spectra of copper complex in acetonitrile at 300 K and 77 K were recorded. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus by well-diffusion method. The zone of inhibition values were measured at 37°C for a period of 24 h. The electrochemical behavior of copper complexes was studied by cyclic voltammetry. Catalytic study indicates the copper complex has efficient catalytic activity in oxidation of amitriptyline.  相似文献   

19.
Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of Schiff bases derived from the condensation of sulfaguanidine with 2,4‐dihydroxy benzaldehyde ( HL1 ), 2‐hydroxy‐1‐naphthaldehyde ( HL2 ) and salicylaldehyde ( HL3 ) have been synthesized. The structures of the prepared metal complexes were proposed based on elemental analysis, molar conductance, thermal analysis (TGA, DSC and DTG), magnetic susceptibility measurements and spectroscopic techniques (IR, UV‐Vis, and ESR). In all complexes, the ligand bonds to the metal ion through the azomethine nitrogen and α‐hydroxy oxygen atoms. The structures of Pd(II) complex 8 and Ru(III) complex 9 were found to be polynuclear. Two kinds of stereochemical geometries; distorted tetrahedral and distorted square pyramidal, have been realized for the Cu(II) complexes based on the results of UV‐Vis, magnetic susceptibility and ESR spectra whereas octahedral geometry was predicted for Co(II), Mn(II) and Ru(III) complexes. Ni(II) complexes were predicted to be square planar and tetrahedral and Pd(II) complexes were found to be square planar. The antimicrobial activity of the ligands and their metal complexes was also investigated against the gram‐positive bacteria Staphylococcus aures and Bacillus subtilis and gram‐negative bacteria, Escherichia coli and Pesudomonas aeruginosa, by using the agar dilution method. Chloramphenicol was used as standard compound. The obtained data revealed that the metal complexes are more or less, active than the parent ligand and standard. The X‐ray crystal structure of HL3 has been also reported.  相似文献   

20.
Compounds (2‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L1 ), 2‐(3,5‐di‐tert‐butyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L2 ) , and 2‐(3,5‐diphenyl‐1H‐pyrazol‐1‐yl)ethyldiphenylphosphinite ( L3 ) were prepared using the synthetic routes reported in literature. These compounds were reacted with [NiCl2(DME)2] or [NiBr2(DME)2] under appropriate reaction conditions to afford six new nickel(II) compounds ([NiCl2( L1)] ( 1 ), [NiCl2( L2 )] ( 2 ), [NiCl2( L3 )] ( 3 ), [NiBr2( L1 )] ( 4 ), [NiBr2( L2 )] ( 5 ) and [NiBr2( L3 )] ( 6 )). The new nickel(II) pre‐catalysts catalyze the oligomerization of ethylene, in the presence of ethylaluminium dichloride as co‐catalyst, to produce butenes, hexenes, octenes and higher carbon chain ethylene oligomers with very little Friedel‐Crafts alkylation products when the reactions were run in toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号