首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two ferrocenylmethyl ammonium salts were used as axle components of pseudorotaxanes with dibenzo[24]crown‐8. The pseudorotaxane with an alkyne terminal group in the axle component underwent a Cu‐catalyzed Huisgen coupling reaction (click reaction) with an alkyl azide to afford cationic [2]rotaxanes with a triazole group in the axle molecule. The rotaxane reacted with Ac2O to produce neutral rotaxanes with an amide group in the axle component. Both cationic and neutral rotaxanes were treated with K[PtCl3(CH2?CH2)] to form the PtII‐containing rotaxanes.  相似文献   

2.
This article reports on developing an efficient synthesis approach to aliphatic polyester dendrimer, poly(thioglycerol‐2‐propionate) (PTP), by combination of thio‐bromo “Click” chemistry with atom transfer nitroxide radical coupling (ATNRC). Through the one‐pot two‐step method, linear polystyrene with hydroxyl end groups (l‐PS‐2OH) was obtained by first atom transfer radical polymerization of styrene and following termination using 4‐(2,3‐dihydroxypropoxy)‐TEMPO (DHP‐TEMPO) to capture the PS macroradicals via ATNRC method. Using l‐PS‐2OH as support, the dendritic repeating units divergently were grown from the hydroxyl end groups via esterification and thio‐bromo “Click” reaction two‐step process. In every generation, the resulting intermediates l‐PS‐d‐PTP (G1‐G4) can be easily isolated from the excessive unreacted monomers by simple precipitation in ethanol without help of time, labor and solvent consuming column chromatographic purification. At last, cleavage of the alkoxyamine group between the PS support and dendrimer at elevated temperature (125 °C) provided the targeted polyester dendrimer PTP up to the fourth generation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1762–1768  相似文献   

3.
The metal complex (5,10,15,20‐tetrakis‐(4‐sulfonatophenyl)‐porphyrin‐iron (III) chloride (FeTSPP) was new employed in an environmentally benign protocol as an efficient catalyst for a “click” chemistry approach for the synthesis of tetrazole and guanindinyltetrazole derivatives via [2 + 3] cycloaddition reaction of nitriles and azide derivatives in aqueous medium. The synthesized compounds were obtained in excellent yield, short reaction times and a recoverable catalyst.  相似文献   

4.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

5.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

6.
The cyclic amphiphilic polymers with azobenzene in main chain, cyclic azobenzene tetraethylene glycol polystyrene (cyclic‐Azo‐TEG‐PS) with different molecular weights, were successfully synthesized by combining atom transfer radical polymerization (ATRP) and Cu (I)‐catalyzed azide/alkyne cycloaddition (CuAAC). Gel permeation chromatography (GPC), proton nuclear resonance (1H NMR), Fourier transform‐infrared (FT‐IR), and matrix‐assisted laser desorption/ionization time of flight (MALDI‐TOF) mass spectrometry were used to prove the complete conversion from linear polymers to cyclic ones. The thermal properties and photoisomerization behaviors of obtained cyclic polymers have been investigated by comparison with the linear analogues. The cyclic polymer displayed a higher glass transition temperature compared with the linear one, measured by differential scanning calorimetry (DSC). It was found that the trans‐to‐cis and cis‐to‐trans isomerization of cyclic polymers was both slower than that of their respective linear counterparts upon irradiation by UV/visible light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1834–1841  相似文献   

7.
An unprecedented strategy for the high‐efficiency preparation of the cyclic polymers is developed. In this strategy, the atom transfer radical polymerization, the substitution of chain‐end halide by azide group and Cu‐catalyzed alkyne–azide cyclization, i.e., the frequently used three separated steps for the preparation of cyclic polymers, are integrated into a one‐pot reaction by the introduction of a “regulator”. The kernel of this novel strategy is the utilization of the different rates between the competitive ATRP propagation and SN2 substitution of a tertiary‐carbon halogen and secondary‐carbon halogen. 0.55 g (yield = 59%) cyclic poly(methyl methacrylate) is obtained from 3.0 mL reaction solution. This work proposed a high‐efficiency and bright promising strategy for the preparation of cyclic polymer, which would evoke more research interests on cyclic polymer.

  相似文献   


8.
The purpose of this study was to investigate the influence of cross‐linking on the thermomechanical behavior of liquid‐crystalline elastomers (LCEs). Main‐chain LCE networks were synthesized via a thiol‐acrylate Michael addition reaction. The robust nature of this reaction allowed for tailoring of the behavior of the LCEs by varying the concentration and functionality of the cross‐linker. The isotropic rubbery modulus, glass transition temperature, and strain‐to‐failure showed strong dependence on cross‐linker concentration and ranged from 0.9 MPa, 3 °C, and 105% to 3.2 MPa, 25 °C, and 853%, respectively. The isotropic transition temperature (Ti) was shown to be influenced by the functionality of the cross‐linker, ranging from 70 °C to 80 °C for tri‐ and tetra‐functional cross‐linkers. The magnitude of actuation can be tailored by controlling the amount of cross‐linker and applied stress. Actuation increased with increased applied stress and decreased with greater amounts of cross‐linking. The maximum strain actuation achieved was 296% under 100 kPa of bias stress, which resulted in work capacity of 296 kJ/m3 for the lowest cross‐linked networks. Overall, the experimental results provide a fundamental insight linking thermomechanical properties and actuation to a homogenous polydomain nematic LCE networks with order parameters of 0.80 when stretched. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 157–168  相似文献   

9.
Novel fluorescent 7-methoxy- and 7-(diethylamino)-coumarins modified with azido-group on the side chain have been synthesized. Their photophysical properties and single crystals structure characteristics have been studied. In order to demonstrate the possibilities of fluorescent labeling, obtained coumarins have been tested with closo-dodecaborate derivative bearing terminal alkynyl group. CuI catalyzed Huisgen 1,3-dipolar cycloaddition reaction has led to fluorescent conjugates formation. The absorption–emission spectra of the formed conjugates have been presented. The antiproliferative activity and uptake of compounds against several human cell lines were evaluated.  相似文献   

10.
Synthetic access to 7-CF3-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl radicals containing 4-(6-hydroxyhexyloxy)phenyl, 4-hydroxymethylphenyl or 3,5-bis(hydroxymethyl)phenyl groups at the C(3) position and their conversion to tosylates and phosphates are described. The tosylates were used to obtain disulfides and an azide with good yields. The Blatter radical containing the azido group underwent a copper(I)-catalyzed azide–alkyne cycloaddition with phenylacetylene under mild conditions, giving the [1,2,3]triazole product in 84% yield. This indicates the suitability of the azido derivative for grafting Blatter radical onto other molecular objects via the CuAAC “click” reaction. The presented derivatives are promising for accessing surfaces and macromolecules spin-labeled with the Blatter radical.  相似文献   

11.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

12.
Selectfluor, [1‐chloromethyl‐4‐fluoro‐1,4‐diazoniabicyclo‐[2.2.2]octane bis(tetrafluoroborate)], is not only an important electrophilic fluorinating agent but also a facile and efficient “fluorine‐free” functional reagent in other organic reactions. In this Minireview, we will present a brief history of Selectfluor as a transition metal oxidant, fluorine cation and radical initiator in “fluorine‐free” functionalizations over the last five years.  相似文献   

13.
The synthesis of ABC triblock copolymers were accomplished by Cu(0)‐catalyzed one‐pot strategy combining single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction with “click” chemistry. First, the precursors α,ω‐heterofunctionalized poly(ethylene oxide) (PEO) with a 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group and an alkyne group, polystyrene (PS), and poly(tert‐butyl acrylate) (PtBA) with bromine or azide end group were designed and synthesized, respectively. Then, the one‐pot coupling reactions between these precursors were carried out in the system of Cu(0)/Me6TREN: The SET‐NRC reaction between bromine group and nitroxide radical group, subsequently click coupling between azide and alkyne group. It was noticeable that Cu(I) generated from Cu(0) by SET mechanism was utilized to catalyze click chemistry. To estimate the effect of Cu(0) on the one‐pot reaction, a comparative analysis was performed in presence of different Cu(0) species. The result showed that Cu(0) with more active surface area could accelerate the one‐pot reaction significantly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The tadpole‐shaped amphiphilic copolymers with cyclic polystyrene as the head and a linear poly(N‐isopropylacrylamide) as the tail have been successfully synthesized by combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and “click” reaction. The synthesis involves two main steps: (1) preparation of a linear acetylene‐terminated PNIPAAM‐b‐PS with a side azido group anchored at the junction between two blocks; (2) intramolecular cyclization reaction to produce the cyclic PS block using “click” chemistry under high dilution. The structures, molecular weights, and molecular weight distributions of the resulted intermediates and the target polymers were characterized by their 1H NMR, FTIR, and gel permeation chromatography. The difference of surface property between tadpole‐shaped polymer and its linear precursor was observed, and the water contact angles on the former surface are larger than that of the latter surface. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2390–2401, 2008  相似文献   

15.
It is shown theorectically that the classical formula for calculating the theoretical plate number from squared first central moment, t , and second central moment, σ2, according to n theor = t /σ2 is valid only when the capacity ratio, k approaches infinity. The general relation between the classical experimental HETP value, H = L/nm theor, and the underlying true theoretical plate height, ΔL, is found to be when (σ′)2 is the total column contribution to band broadening, L is the column length, D m is the average diffusion coefficient of the sample component in the mobile phase, D s is its value in the stationary phase, and u is the average linear velocity of the mobile phase. The mobile phase displacement, as well as the mass exchange process, is assumed to be continuous, but the application of the plate concept conditions leads to a mass balance equation that can be interpreted as belonging to a modified discontinuous plate model. The contributions 2D m/u and k 2 D s/u from longitudinal sample diffusion in the mobile and stationary phases, respectively, are consistent with the assumption that the processes are statistically independent, although the common solution technique of the differential equations does not take full account of this independence.  相似文献   

16.
The end‐to‐end cyclization of telechelic polyisobutylenes (PIB's) toward cyclic polyisobutylenes is reported, using either ring‐closing metathesis (RCM) or the azide/alkyne‐“click”‐reaction. The first approach uses bisallyl‐telchelic PIB's (Mn = 1650, 3680, 9770 g mol?1) and Grubbs 1st‐, 2nd‐, and 3rd‐generation catalyst leading to cyclic PIB's in 60–80% yield, with narrow polydispersities (Mw/Mn = 1.25). Azide/alkyne‐“click”‐reactions of bisalkyne‐telechelic PIB's (Mn = 3840 and 9820 g mol?1) with excess of 1,11‐diazido‐undecane leads to the formation of mixtures of linear/cyclic PIB's under formation of oligomeric cycles. Subsequent reaction of the residual azide‐moieties in the linear PIB's with excess of alkyne‐telechelic PEO enables the chromatographic removal of the resulting linear PEO‐PIB‐block copolymers by column chromatography. Thus pure cyclic PIB's can be obtained using this double‐“click”‐method, devoid of linear contaminants. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 671–680, 2010  相似文献   

17.
The synthesis of new ω‐phosphonic acid‐terminated poly(ethylene oxide) (PEOs) monomethyl ethers was investigated by the combination of Atherton–Todd or Kabachnik–Fields reactions and the “click” copper‐catalyzed 1,3‐dipolar cycloaddition of azides and terminal alkynes. The Atherton–Todd route fails to give the corresponding phosphonic acid‐terminated PEOs due to competitive cleavage of the P? N bond during the dealkylation step. In contrast, the Kabachnik–Fields route leads with very good yields to ω‐phosphonic acid‐PEO through “click” reaction of azido‐PEO onto dimethyl aminopropargyl phosphonate prepared by Kabachnik–Fields reaction between propargylbenzylimine and dimethyl phosphonate, followed by acidic hydrolysis. The reported methodology, precluding the use of anionic polymerization of ethylene oxide, leads to novel well‐defined phosphonic acid‐terminated PEOs from commercially available products in good yields. Moreover, such a strategy can be adapted to anchor phosphonic acid functionality onto a wide range of polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A facile homogeneous polymerization system involving the iniferter agent 1‐cyano‐1‐methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0/[MANDC]0/[Cu(OAc)2]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical “living”/controlled features of “living” radical polymerization, even with ppm level catalyst Cu(OAc)2, first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. 1H NMR spectra and chain‐extension experiments further confirm the “living” characteristics of this process. A plausible mechanism is discussed.

  相似文献   


19.
A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine N-nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents. Further nucleophilic substitution of their remaining chlorine atoms with propargylamine in DMF led to morpholine- and diethylamine-functionalized monopropargylamine cage complexes, the molecules of which contain the single terminal C≡C bond. Their “click” 1,3-cycloaddition reactions in toluene with ortho-carborane-(1)-methylazide catalyzed by copper(II) acetate gave spacer-containing di- and tritopic iron(II) carboranoclatrochelates formed by a covalent linking between their different polyhedral(cage) fragments. The obtained complexes were characterized using elemental analysis, MALDI-TOF mass, UV-Vis, 1H, 1H{11B}, 11B, 11B{1H}, 19F{1H} and 13C{1H}-NMR spectra, and by a single crystal synchrotron X-ray diffraction experiment for the diethylamine-functionalized iron(II) carboranoclathrochelate. Its encapsulated iron(II) ion is situated almost in the center of the FeN6-coordination polyhedron possessing a geometry intermediate between a trigonal prism and a trigonal antiprism with a distortion angle φ of approximately 28°. Conformation of this hybrid molecule is strongly affected by its intramolecular dihydrogen bonding: a flexibility of the carborane-terminated ribbed substituent allowed the formation of numerous C–H…H–B intramolecular interactions. The H(C) atom of this carborane core also forms the intermolecular C–H…F–B interaction with an adjacent carboranoclathrochelate molecule. The N–H…N intermolecular interaction between the diethylamine group of one hybrid molecule and the heterocyclic five-membered 1H-[1,2,3]-triazolyl fragment of the second molecule of this type caused formation of H-bonded carboranoclathrochelate dimers in the X-rayed crystal.  相似文献   

20.
A series of novel conjugates of cobalt bis(dicarbollide) and closo-dodecaborate with curcumin were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition. These conjugates were tested for antibacterial activity. It was shown that all derivatives are active when exposed to Bacillus cereus ATCC 10702 and are not active against Gram-negative microorganisms and Candida albicans at the maximum studied concentration of 1000 mg/L. The conjugate of alkynyl-curcumin with azide synthesized from the tetrahydropyran derivative of cobalt bis(dicarbollide) exhibited activity against Gram-positive microorganisms: Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and the clinical isolate MRSA 17, that surpassed curcumin by 2–4 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号