首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.  相似文献   

2.
Silicoaluminophosphate (SAPO) molecular sieves are an important class of microporous materials and are useful for industrial catalysis and separations. They have been synthesized exclusively by the use of expensive and environmentally unfriendly organic structure‐directing agents. Now the synthesis of SAPO molecular sieves is reported with MER, EDI, GIS, and ANA topologies under wholly inorganic conditions. Multinuclear MAS NMR analyses demonstrate the presence of Si, Al, and P atoms in their frameworks. These SAPO materials all have unusually high framework charge densities (0.25–0.46), owing to the small size of alkali metal cations used as an inorganic structure‐directing agent. A continuous Si increase in the synthesis gel for MER‐type SAPO molecular sieves led to the formation of framework Si(0Al) units, decreasing the number of extra‐framework cations per unit cell and thus making the resulting solid useful for CO2 adsorption.  相似文献   

3.
Ammonolysis of 1,2‐bis[dichloro(methyl)silyl]ethane afforded a crystalline tricyclic silazane along with polymeric material. The crystalline material could be isolated in pure state. It was analyzed by 1H, 13C, 15N and 29Si NMR spectroscopy in solution, by 13C, 15N and 29Si MAS NMR spectroscopy in the solid state, as well as by single‐crystal and powder X‐ray diffraction. The title compound exists as a single isomer in solution, whereas in the solid state the presence of several modifications is indicated, in particular by the solid‐state MAS NMR spectra.  相似文献   

4.
Acid–base bifunctional mesoporous silica nanoparticles (MSN) were prepared by a one‐step synthesis by co‐condensation of tetraethoxysilane (TEOS) and silanes possessing amino and/or sulfonic acid groups. Both the functionality and morphology of the particles can be controlled. The grafted functional groups were characterized by using solid‐state 29Si and 13C cross‐polarization/magic angle spinning (CP/MAS) NMR spectroscopy, thermal analysis, and elemental analysis, whereas the structural and the morphological features of the materials were evaluated by using XRD and N2 adsorption–desorption analyses, and SEM imaging. The catalytic activities of the mono‐ and bifunctional mesoporous hybrid materials were evaluated in carbon–carbon coupling reactions like the nitroaldol reaction and the one‐pot deacetalization–nitroaldol and deacetalization–aldol reactions. Among all the catalysts evaluated, the bifunctional sample containing amine and sulfonic acid groups (MSN–NNH2–SO3H) showed excellent catalytic activity, whereas the homogeneous catalysts were unable to initiate the reaction due to their mutual neutralization in solution. Therefore a cooperative acid–base activation is envisaged for the carbon–carbon coupling reactions.  相似文献   

5.
In situ MAS NMR studies on the monitoring of hydrothermal synthesis of zeolites are reviewed. The first part of the review contains information on the experimental techniques used for the in situ NMR studies in static and MAS conditions. In the second part, the main capabilities of the in situ 1H, 11B, 13C, 14N, 19F, 23Na, 27Al, 29Si and 31P MAS NMR for the elucidation of the mechanism of hydrothermal synthesis of zeolites are examined and the data on NMR lines identification are summarized. In the last part the main application areas of the techniques are considered and illustrated with examples taken from the mechanistic studies of zeolites A, X, MFI and BEA synthesis. A cross-reference index between the materials studied, the experimental approaches used, the mechanistic information obtained, and the corresponding literature sources is established.  相似文献   

6.
In this work, the first generation of poly(propyleneimine) dendrimers were functionalized with alkoxysilane terminal groups and subjected to one of two different sol–gel process that followed two different catalytic pathways, that is base‐ or acid‐catalyzed pathways. Thus, two series of new organic–inorganic hybrid materials were obtained in the form of monolithic pieces with differences in terms of both morphology and silanol content, which originated from the different sol–gel pathway that was followed. Moreover, calcium ions were added into the hybrid composition to promote in vitro bioactivity and phosphorous sources were used during the sol–gel step to obtain an earlier bioactive response. Characterization of these organic–inorganic hybrid materials was performed by means of thermogravimetric and elemental analyses, Fourier transform infrared spectroscopy (FTIR), solid state 13C, 29Si and 31P magic‐angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, N2‐adsorption isotherms, mercury‐intrusion porosimetry, and ζ‐potential measurements. The in vitro bioactivity of the dendritic hybrid networks was evaluated by soaking the materials in simulated body fluid and the results were explained in terms of the composition of the hybrids and the sol–gel route that was followed to prepare them.  相似文献   

7.
A general strategy of structural analysis of alumina silicate by combining various solid‐state NMR measurements such as single pulse, multi‐quantum magic angle spinning, double‐quantum homo‐nuclear correlation under magic angle spinning (DQ‐MAS), and cross‐polarization hetero‐nuclear correlation (CP‐HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of 27Al in single pulse, DQ‐MAS, and even in triple‐quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ‐MAS methods for homo‐nuclear correlations between both 27Al–27Al and 29Si–29Si and by CP‐HETCOR for hetero‐nuclear correlations between 27Al–29Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina‐silicate minerals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
By using 13C MAS NMR spectroscopy (MAS=magic angle spinning), the conversion of selectively 13C‐labeled n‐butane on zeolite H‐ZSM‐5 at 430–470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C‐label in the n‐butane molecule, and 2) oligomerization–cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl‐substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC–MS data provided evidence for a monomolecular mechanism of the 13C‐label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (Ea=75 kJ mol?1 for the scrambling and 71 kJ mol?1 for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n‐butane as being the rate‐determining stage of the n‐butane conversion on zeolite H‐ZSM‐5.  相似文献   

9.
The hydrothermal transformation of silico–aluminophosphate gel with cyclohexylamine to SAPO-44 has been examined. The hydrothermal crystallisation products of the SAPO have been investigated by X-ray diffraction, FTIR, nitrogen and water adsorption, thermogravimetric analysis, surface analysis and 27Al, 31P, and 29Si MAS NMR. Structural changes were observed in the silico–aluminophosphate gel with and without organic template and during the hydrothermal crystallisation. The silico–aluminophosphate gel converted to pure SAPO-CHA phase in 168 h at 473 K. The surface of SAPO-44 was silicon rich as compared with that of SAPO-34 and SAPO-18. The 27Al MAS NMR signal of tetrahedrally coordinated Al observed in the silico–aluminophosphate gel without the organic template was changed to octa-, penta- and tetrahedrally coordinated aluminium upon the addition of the cyclohexylamine template to the SAPO gel. After 3 h of hydrothermal treatment at 473 K however, the 27Al MAS NMR signals of the octahedral and pentacoordinated aluminium were removed. This was also confirmed by 31P and 29Si MAS NMR. The tetrahedrally coordinated P and Si were detected within 3 h at 473 K. The sorption capacity and adsorption–desorption trends of the SAPO gels and the crystallisation products were found to be different. 29Si MAS NMR results indicated that the percentage of Si (4Al) and its distribution were significantly affected by the crystallization period. SAPO-44 was thermally stable up to 973 K with phase change observed over the calcination temperature of 1193 K. The SAPO gels and the crystallisation products have also been investigated for their catalytic behaviour in n-hexane and ethanol conversion reactions.  相似文献   

10.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

11.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

12.
The synthesis and characterization of Zr‐POSS and Hf‐POSS coordination polymers were reported. The IR data and the solid‐state 29Si MAS NMR indicated the existence of Si? O? M linkage. The polarized optical microscopy images and the XRD data suggested their crystalline nature.  相似文献   

13.
The mechanism of crystallization of microporous titanosilicate ETS‐10 was investigated by Raman spectroscopy combined with 29Si magic‐angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three‐membered ring species is shown to be the key step in the hydrothermal synthesis of ETS‐10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO2 particles. These insights into the mechanism of ETS‐10 growth led to the successful development of a new synthesis route to the vanadosilicate AM‐6 that involves the use of intermediates that contain three‐membered ring species as an initiator.  相似文献   

14.
Several novel aluminum alkoxydisilanolate complexes were prepared by reaction of triphenylsilanol with aluminum 2‐methoxyethoxide, aluminum 2‐ethoxyethoxide, aluminum sec‐butoxide and aluminum iso‐propoxide. All new complexes, [(Ph3SiO)2Al(OR)]2 [where R = CH2CH2OCH3 (1), CH2CH2OC2H5 (2), CH(CH3)CH2CH3 (3) and CH(CH3)2 (4)] were characterized by elemental analysis, mass spectrometry and infrared spectroscopy (IR), as well as 1H, 13C, 29Si and 27Al NMR spectroscopies. The solid‐state structures of the representative compound 2 and 4 were also verified by single‐crystal X‐ray analyses. Complexes 2 and 4 are dimers having distorted trigonal bipyramidal and tetrahedral coordination at the aluminum center, respectively. The 27Al NMR spectrum of compound 2 showed that the solid‐state structure of the complex was not retained in solution, and tetracoordinated aluminum was found in solution in contrast to the pentacoordinated geometry in the solid state. The hydrothermal treatment of 1 and 4 at 200 °C and the subsequent calcination at 1000 °C resulted in the formation of alumina–silica composite (4SiO2·Al2O3) with γ‐alumina in the silica matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
13C, 15N CP/MAS, including 1H–13C and 1H–15N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa‐macrolides as 3‐formylrifamycin SV (1) and its derivatives (2–6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3OH and 2/CH3CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV–vis data recorded for them were different in 300–375 nm region. Detailed solid state 13C and 15N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3‐formylrifamycin SV (1) and its amino derivatives (3–6), can occur in pure non‐ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3–6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3‐formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi‐empirical level of theory, allowed visualization the most energetically favorable non‐ionic and zwitterionic forms of 1–6 antibiotics, strongly stabilized via intramolecular H‐bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Novel xerogels X1 a–d were obtained by sol‐gel processing of the monomeric T‐functionalized diphosphine ligand (MeO)3Si(CH2)6CH[CH2PPh2]2 [1(T0)] with various amounts of the co‐condensing agents MeSi(OMe)2(CH2)6(OMe)2SiMe (D0–C6–D0) and MeSi(OMe)2(CH2)3(C6H4)(CH2)3(OMe)2SiMe [Ph(1,4‐C3D0)2] . 29Si CP/MAS NMR spectroscopic investigations were applied to probe the matrices and their degree of condensation. The integrity of the hydrocarbon backbone and diphosphine moiety was examined by means of solid state NMR spectroscopy (13C, 31P). To study the dynamics of the matrices and the phosphorus centers detailed measurements of relaxation time (T1ρH) and cross polarization constants (TSiH, TPH) were carried out. The accessibility of the polysiloxane‐supported diphosphines was scrutinized by some typical phosphine reactions. It was found that reagents such as H2O2, MeI as well as bulky molecules like (NBD)Mo(CO)4 or (COD)PdCl2 are able to reach all phosphorus centers independent on the kind of the backbone of the matrix. SEM micrographs show the morphology of the hybrid materials and energy dispersive X‐ray spectroscopy (EDX) suggest that the distribution of the elements agree with the applied composition.  相似文献   

17.
The syntheses of the zwitterionic spirocyclic λ5Si-silicates 6–9 are described. These chiral zwitterions contain a pentacoordinate (formally negatively charged) silicon atom and a tetracoordinate (formally positively charged) nitrogen atom. Compounds 6 · 1/2 HO(CH2)2OH, 7 , 8 · CH3CN, and 9 were studied by solution-state (1H, 13C, 29Si) and solid-state (29Si CP/MAS) NMR experiments. In addition, all compounds were structurally characterized by single-crystal X-ray diffraction. The dynamic behavior (Berry-type enantiomerization) of 7–9 in solution was studied by VT 1H NMR experiments. These experimental studies were completed by ab initio investigations of the related anionic model species 10–12 .  相似文献   

18.
The syntheses of the zwitterionic spirocyclic λ5Si‐silicates 7–14 are described. The chiral zwitterions contain a pentacoordinate (formally negatively charged) silicon atom and a tetracoordinate (formally positively charged) nitrogen atom, the ate and onium center being connected by an alkylene group. The zwitterions each contain two identical bidentate diolato(2–) ligands that formally derive from acetohydroximic acid or benzohydroximic acid. The stereochemistry and dynamic behavior of these compounds were investigated by experimental and theoretical methods. For this purpose, the zwitterionic λ5Si‐silicates 7–14 were studied by solution (1H, 13C, 29Si) and solid‐state (13C, 15N, and 29Si CP/MAS) NMR experiments. In addition, compounds 7 , 8 , 10 , 11 , and 13 were structurally characterized by single‐crystal X‐ray diffraction. The dynamic behavior (intramolecular enantiomerization) of 7 and 13 in solution was studied by VT 1H NMR experiments. These experimental studies were completed by ab initio investigations of the related anionic model species 15 . The chiral compounds 7–14 exist as (λ)‐ and (δ)‐enantiomers in the solid state and in solution. The trigonal‐bipyramidal structure of the respective Si‐coordination polyhedra, with the two carbon‐linked oxygen atoms in the axial sites, is the energetically most favorable one. The (λ)‐ and (δ)‐enantiomers of 7–14 are configurationally stable in solution on the NMR time scale ([D6]DMSO, room temperature). They undergo an intramolecular (λ)/(δ)‐enantiomerization (twist‐type mechanism), with an activation free enthalpy of δG{ = 72–73 kJ mol–1 (experimentally established for 7 and 13 ; calculated energy barrier for the model species 15 : 66.0 kJ mol–1).  相似文献   

19.
Employing a multitude of modern solid state NMR techniques including 13C{15N}REDOR NMR, 1H–13C CP NMR, 11B MQMAS NMR spectroscopic experiments, the structural organization of Si2B2N5C4 ceramic has been studied. The experiments were executed on double isotope enriched (13C, 15N) and natural isotope abundance Si2B2N5C4 ceramics. The materials were synthesized by aminolysis and subsequent pyrolysis of intermediate pre‐ceramic polymers that were obtained from the single source precursor TSDE, 1‐(trichlorosilyl)‐1‐(dichloroboryl)ethane (Cl3Si–CH(CH3)–BCl2). The result of the 13C{15N} REDOR NMR spectroscopic experiment shows that carbon atoms are incorporated into the network by bridging to nitrogen, which already occurs during the polymerization step. Furthermore, the combined results of 11B NMR and 11B MQMAS NMR indicate that boron atoms may also be connected to carbon in addition to nitrogen.  相似文献   

20.
The syntheses and characterization of linear silarylene‐siloxane‐diacetylene polymers 3a–c and their thermal conversion to crosslinked elastomeric materials 4a–c are discussed. Inclusion of the diacetylene unit required synthesis of an appropriate monomeric species. 1,4‐Bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2Si? N(CH3)2] 2 was prepared from 1,4‐dilithio‐1,3‐butadiyne and 2 equiv of dimethylaminodimethylchlorosilane. The linear polymers were prepared via polycondensation of 2 with a series of disilanol prepolymers. The low molecular weight silarylene‐siloxane prepolymers 1a–c (terminated by hydroxyl groups) were synthesized via solution condensation of an excess amount of 1,4‐bis(hydroxydimethylsilyl)benzene with bis(dimethylamino)dimethylsilane. The linear polymers were characterized by 1H and 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis (TGA), and DSC. The elastomers exhibited long‐term oxidative stability up to 330 °C in air as determined by TGA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 88–94, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号