首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrocycles are an important player in supramolecular chemistry. In 2008, a new class of macrocycles, “pillar[n]arenes”, were first discovered. Research efforts in the area of pillar[n]arenes have elucidated key properties, such as their shape, reaction mechanism, host–guest properties, and their versatile functionality, which has contributed to the development of pillar[n]arene chemistry and their applications to various fields. This Minireview describes how pillar[n]arene‐based supramolecular assemblies can be applied to supramolecular gel formation, reactions, light‐harvesting systems, drug‐delivery systems, biochemical applications, separation and storage materials, and surface chemistry.  相似文献   

2.
《Electrophoresis》2018,39(2):363-369
Pillar[n]arenes have achieved much interest in material chemistry and supramolecular chemistry due to unusual pillar shape structure and high selectivity toward guest. However, pillar[n]arenes have not yet been applied in capillary electrochromatography. This work at first time reports that carboxylatopillar[5]arene is used as a stationary phase in open‐tubular capillary electrochromatography. Carboxylatopillar[5]arene not only possess the advantages of pillar[n]arenes but also provide free carboxy groups for immobilizing on the inner wall of capillary column via covalent bonding. The characterization of SEM and FT‐IR indicated that carboxylatopillar[5]arene was successfully grafted on the inner wall of capillary. The baseline separation of model analytes including neutral, basic, and acidic compounds, nonsteroidal anti‐inflammatory drugs and dansyl‐amino acids have been achieved thanks to the electron‐rich cavity of carboxylatopillar[5]arene and hydrophobic interactions between the analytes and stationary phase. The intraday, interday, and column‐to‐column precisions (RSDs) of retention time and peak area for the neutral analytes were all less than 3.34 and 9.65%, respectively. This work indicates that pillar[n]arenes have great potential in capillary electrochromatography as novel stationary phase.  相似文献   

3.
Activated perethylated pillar[5]arene crystals show an unexpected alkane‐shape‐ and ‐length‐selective gate‐opening behavior. Activated crystals were obtained upon removing solvents from perethylated pillar[5]arene crystals by heating. The activated crystals could quantitatively take up n‐alkanes with carbon chains containing more than five carbon atoms as a consequence of their gate‐opening pressure. As the chain length of the n‐alkanes increased, the gate pressure decreased. A transformation into a herringbone structure was induced when n‐hexane was used as a guest. By contrast, cyclic and branched alkanes were not taken up and could not induce a crystal transformation because they were too large to fit in the cavities of the pillar[5]arene. Alkane‐shape‐selective molecular recognition of pillar[5]arenes in the solution state was translated into the vapor/crystal state.  相似文献   

4.
Transformation of a methylene group of the pillar[5]arene scaffold into a ketone has been achieved by treatment with N‐bromosuccinimide followed by hydrolysis of the bromide intermediate and oxidation of the resulting secondary benzylic alcohol with BaMnO4. Condensation of the resulting macrocycle including a ketone function with p‐toluenesulfonyl hydrazide followed by reaction of the corresponding tosylhydrazone with C60 under modified Bamford–Stevens conditions gave a fulleropillar[5]arene derivative. This building block has been used to prepare a rotaxane. The resulting molecule combining the fullerene‐functionalized macrocycle with an axle bearing a porphyrin stopper is a photoactive molecular device in which the porphyrin emission is efficiently quenched by the fullerene moiety.  相似文献   

5.
Activated crystals of pillar[6]arene produced by removing the solvent upon heating were able to take up branched and cyclic alkane vapors as a consequence of their gate‐opening behavior. The uptake of branched and cyclic alkane vapors by the activated crystals of pillar[6]arene induced a crystal transformation to form one‐dimensional channel structures. However, the activated crystals of pillar[6]arene hardly took up linear alkane vapors because the cavity size of pillar[6]arene is too large to form stable complexes with linear alkanes. This shape‐selective uptake behavior of pillar[6]arene was further utilized for improving the research octane number of an alkane mixture of isooctane and n‐heptane: interestingly, the research octane number was dramatically improved from a low research octane number (17 %) to a high research octane number (>99 %) using the activated crystals of pillar[6]arene.  相似文献   

6.
New liquid‐crystalline pillar[5]arene derivatives have been prepared by grafting first‐generation Percec‐type poly(benzylether) dendrons onto the macrocyclic scaffold. The molecules adopt a disc‐shaped structure perfectly suited for self‐organization into a columnar liquid‐crystalline phase. In this way, the pillar[5]arene cores are piled up, thus forming a nanotubular wire encased within a shell of peripheral dendrons. The capability of pillar[5]arenes to form inclusion complexes has been also exploited. Specifically, detailed binding studies have been carried out in solution with 1,6‐dicyanohexane as the guest. Inclusion complexes have also been prepared in the solid state. Supramolecular organization into the Colh mesophase has been deduced from X‐ray diffraction data and found to be similar to that observed within the crystal lattice of a model inclusion complex prepared from 1,4‐dimethoxypillar[5]arene and 1,6‐dicyanohexane.  相似文献   

7.
By simple ligand exchange of the cationic transition‐metal complexes [(Cp*)M(acetone)3](OTf)2 (Cp*=pentamethylcyclopentadienyl and M=Ir or Rh) with pillar[5]arene, mono‐ and polynuclear pillar[5]arenes, a new class of metalated host molecules, is prepared. Single‐crystal X‐ray analysis shows that the charged transition‐metal cations are directly bound to the outer π‐surface of aromatic rings of pillar[5]arene. One of the triflate anions is deeply embedded within the cavity of the trinuclear pillar[5]arenes, which is different to the host–guest behavior of most pillar[5]arenes. DFT calculation of the electrostatic potential revealed that the metalated pillar[5]arenes featured an electron‐deficient cavity due to the presence of the electron‐withdrawing transition metals, thus allowing encapsulation of electron‐rich guests mainly driven by anion–π interactions.  相似文献   

8.
Two‐ and Threefold Intramolecular Brigdging p‐tert‐Butylcalix[8]arene Triphosphates – Synthesis, Structure and Stereochemistry [1] The phosphorylation of p‐tert‐butylcalix[8]arene ( 1 ) with phosphorus pentachloride and hydrolysis gives intramolecular bridging tert‐butylcalix[8]arene triphosphates. The reactivity (esterification, dehydratisation, complexation), the structure (nmr and x‐ray), and the stereochemical behaviour of the phosphates will be discussed.  相似文献   

9.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

10.
Amphiphilic pillar[5]arene‐containing [2]rotaxanes have been prepared and fully characterized. In the particular case of the [2]rotaxane incorporating a 1,4‐diethoxypillar[5]arene subunit, the structure of the compound was confirmed by X‐ray crystal structure analysis. Owing to a good hydrophilic/hydrophobic balance, stable Langmuir films have been obtained for these rotaxanes and the size of the peripheral alkyl chains on the pillar[5]arene subunit has a dramatic influence on the reversibility during compression–decompression cycles. Indeed, when these are small enough, molecular reorganization of the rotaxane by gliding motions are capable of preventing strong π–π interactions between neighboring macrocycles in the thin film.  相似文献   

11.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   

12.
首次合成一系列杯[10]冠醚。通过将对叔丁基杯[10]芳烃和乙二醇双对甲苯磺酸酯或多甘醇双对甲苯磺酸酯在K2CO3/甲苯或Cs2CO3/丙酮体系中反应,得到一系列杯[10]冠醚:1,2-杯[10]冠-4、1,3-杯[10]冠-2、1,2-,1,3-杯[10]冠-3、1,4-杯[10]冠-4、和1,6-杯[10]冠-4。  相似文献   

13.
Five novel Schiff's bases p‐tert‐butylcalix[4]arenes have been synthesized in high yields by the reaction of 1,3‐distally disubstituted p‐tert‐butylcalix[4]arene amine (1) with the corresponding aromatic aldehydes, and their cation binding abilities and selectivities with alkali and heavy metal ions have been evaluated by solvent extraction of aqueous metal picrates to show the highest Ag+ extractability for Schiff's base p‐tert‐butylcalix[4]arene (6) and the best Na+/Li+ and Ag+/Ti+ selectivities for Schiff's base p‐tert‐butylcalix[4]arene (4 and 2) over any other calix[4]arene derivatives, respectively.  相似文献   

14.
A novel potentiometric sensor based on screen‐printed carbon electrode covered with electropolymerized polyaniline (PANI) and unsubstituted pillar[5]arene as ionophore has been developed and tested in potentiometric measurements of pH and metal ions. The introduction of pillar[5]arene improved the reversibility of the pH response in the range from 2.0 to 9.0 with the slope of 45 mV/pH. Among metal cations, the response to Fe3+ and Ag+ ions was referred to PANI redox conversion whereas the signal toward Cu2+ in the range from 1.0×10?6 to 1.0×10?2 M (limit of detection (LOD) 3.0×10?7 M) to specific interaction with the macrocycle.  相似文献   

15.
Various operating conditions have been applied on tetrakis[p‐(halogenomethyl)]‐ and tetrakis[p‐(aminomethyl)]calix[4]arene derivatives to improve the synthesis of the 5,11,17,23‐tetrakis[(diethylphosphono)methyl]‐25,26,27,28‐tetrahydroxycalix[4]arene. Two new, high yield, synthetic pathways have been selected, involving, for the first one, the 25,26,27,28‐tetrahydroxy‐5,11,17,23‐tetrakis[(trimethylamino)methyl]calix[4]arene, tetraiodide, DMF, and 10 equiv. of triethyl phosphite ((EtO)3P), and, for the other one, the 5,11,17,23‐tetra(bromomethyl)‐25,26,27,28‐tetrahydroxycalix[4]arene, CH2Cl2, and only 4 equiv. of (EtO)2P.  相似文献   

16.
The synthesis of two new flavin substituted calix[4]arene derivatives, 9 and 10 , is described. The first flavin substituted calix[4]arene derivative 9 was synthesized by the reaction of 3‐methylalloxazine ( 5 ) with 25,27‐bis(3‐bromopropoxy)‐26,28‐dihydroxy‐5,11,17,23‐tetra(tert‐butyl)calix[4]arene ( 4 ) in high yield (92%). The other derivative 10 was prepared from 3‐methylalloxazine‐1‐acetic acid ( 7 ) and 25,27‐bis(3‐cyanopropoxy)calix[4]arene ( 3 ). All new compounds were characterized by a combination of FT‐IR and 1H‐NMR spectroscopy, and elemental‐analysis techniques.  相似文献   

17.
The p-nitrophenylazo calix[4] arene derivatives la-ld with nonlinear optical(NLO)properties were prepared by the diazo-coupling reaction of calix[4]arene with p-nitrophenyl diazonium.The diazotization reaction of p-nltroaniline was caried out with isoamyl nitrite as a source of nitrous acid in EtONa/EtOH under refluxing conditon.X-Ray crystallographic analysis and ^1H NMR sptectra reveal that they exist as cone conformation in crystal state or in soution.HRS measurements at 1064 nm in THF indicate that p-nitrophenylazo calix[4]arenes have higher hyperpolarizability βz values than the corresponding reference compound 4-(4-nitrophenylazo)-2,6-dimethyl-phenol,without red shift of the charge transfer band.The tetrakis p-nitropheylazo calix[4]arene(2)with longer alkyl chains can form monolayer aht the air/water interface.  相似文献   

18.
Bacterial biofilms are difficult to eradicate because they are less susceptible to antibiotics and more easily develop resistance. Therefore, there is an urgent need for new materials that can combat planktonic bacteria and disrupt established biofilms. To tackle this challenge, we design a multifunctional zwitterionic pillar[5]arene, which can self‐assemble into weakly positively charged nanoaggregates that exhibit antibacterial activity against Gram‐negative Escherichia coli (DH5α) and Gram‐positive Staphylococcus aureus (SH1000) bacterial strains in solution. In addition, the zwitterionic pillar[5]arene can efficiently disrupt pre‐existing Escherichia coli (DH5α) biofilms and kill the biofilm‐enclosed bacteria without rapid generation of resistance.  相似文献   

19.
Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para ‐arylenes, were synthesized efficiently by two distinct methods. In a macrocycle‐to‐macrocycle transformation approach, S6‐corona[3]arene[3]tetrazine underwent sequential SNAr reactions with HS‐C6H4‐X‐C6H4‐SH (X=S, CH2, CMe2, SO2, and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one‐pot three‐component reaction of HS‐C6H4‐X‐C6H4‐SH (X=S, CH2, CMe2, SO2, and O) with diethyl 2,5‐dimercaptoterephthalate and 2 equiv of 3,6‐dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4‐alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine‐tuned by the nature of the bridging element X.  相似文献   

20.
New calix[4]arene‐based bis‐phosphonites, bis‐phosphites and bis‐O‐acylphosphites were synthesized and characterized. Treatment of these P‐ligands with selected rhodium and platinum precursors led to mononuclear complexes that were satisfactorily characterized. The solid state structure of the dirhodium(I) complex 14 has been determined by X‐ray diffraction. The two rhodium centres are bridged by two chloro ligands; one rhodium atom is further coordinated by calix[4]arene phosphorus atoms and the other by cyclooctadiene. The new calix[4]arene P‐ligands were tested in the Rh(I) catalyzed hydroformylation of 1‐octene. All Rh(I) complexes catalyzed the reaction leading to high chemoselectivity with regard to the formation of aldehydes. Yields and n/iso‐selectivities depended on the reaction conditions. Average yields of 80 % and n/iso‐ratios of about 1.3 to 1.5 were observed. High yields of aldehydes can be achieved using the methoxy substituted P‐ligands at low Rh:ligand ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号