首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐Substituted bis(tetrazol‐5‐yl)diazenes (substituents are 1‐CH3 ( 3a ), 1‐Ph ( 3b ), 2‐CH3 ( 3c ), and 2‐tBu ( 3d )) were synthesized by oxidative coupling of corresponding 5‐aminotetrazoles. All compounds were characterized with 1H and 13C NMR, IR‐ and UV‐spectroscopy, and thermal analysis. Crystal and molecular structures of bis(1‐phenyltetra‐ zol‐5‐yl)diazene ( 3b ) and bis(2‐tert‐butyltetrazol‐5‐yl)diazene ( 3d ) were determined by single crystal X‐ray diffraction. Molecules of these compounds are trans‐isomers in solid. According to X‐Ray data, 3b molecule is S‐trans‐S‐trans conformer, however 3d is S‐cis‐S‐cis one. Quantum‐chemical investigation of geometry and relative stability of cis‐ and trans‐isomers and stable conformations of compounds 3a–d was carried out. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:24–35, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20574  相似文献   

2.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

3.
[TcI(NO)Cl(H2L1)2]+ cations (H2L1 = 2‐(diphenylphosphanyl)aniline) are formed during reactions of H2L1 with (NBu4)[Tc(NO)Cl4(MeOH)] or (NH4)TcO4/HCl/NH2OH mixtures. Different isomers were isolated depending on the counterions and solvents used. The technetium(I) complexes cis‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2]Cl, trans‐NO,Cl,cis‐P,P‐[TcI(NO)Cl(H2L1)2]2(TcCl6), and trans‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2](PF6) were isolated in crystalline form and studied by spectroscopic methods and X‐ray crystallography. DFT calculations show that there are only minor energy differences between the three isomers and the formation of the individual compounds is most probably strongly influenced by interactions with solvents and counterions.  相似文献   

4.
Three coordination polymers (CPs) based on the 5‐[4‐(1H‐imidazol‐1‐yl)phenyl]‐1H‐tetrazole ( HL ) ligand, namely, [Cu(μ2‐ L )(μ4‐pbda)(H2O)] ( 1 ), [Cu2(μ‐Hbtc)(H2btc)(μ3‐OH)(μ4‐ HL )] ( 2 ) and [Cu53‐ L )(μ4‐ L )(μ3‐ip)(μ3‐OH)(H2O)2] · 2H2O ( 3 ) (H2pbda = 1,4‐benzenedicarboxylic acid, H3btc = 1,3,5‐benzenetricarboxylic acid, H2ip = isophthalic acid) were hydrothermally synthesized and structurally characterized. Complex 1 represents “weave”‐type 2D layers consisting of wave‐like 1D chains and 1D straight chains, which are further connected by hydrogen bonds to form a 3D supramolecular structure. Complex 2 exhibits a uninodal (4)‐connected 2D layer with a point symbol of {44 · 62}, in which the L ligand can be described as μ5‐bridging and the H2btc ions display multiple kinds of coordination modes to connect CuII ions into 1D “H”‐type Cu‐H2btc chains. In complex 3 , 2D Cu‐ L layers with two kinds of grids and 1D “stair”‐type Cu‐ip chains link each other to construct a 3D {412 · 63} framework, which contains the pentanuclear subunits. Deprotonated degree and coordination modes of carboxylate ligands may consequentially influence the coordination patterns of main ligands and the final structures of complexes 1 – 3 . Furthermore, electrochemical behaviors and electrocatalytic activities of the title complexes were analyzed at room temperature, suggesting practical applications in areas of electrocatalytic reduction toward nitrite and hydrogen dioxide in aqueous solutions, respectively.  相似文献   

5.
The synthesis and structural characterization of two azirine rhodium(III ) complexes are described. The stabilization, N‐coordination and phenylgroup π‐stacking of the highly reactive and strained 3‐phenyl‐2H‐azirine by transition metal coordination is observed. The reaction of the dimeric complex [(η5‐C5Me5)RhCl2]2 with 3‐phenyl‐2H‐azirine (az) in CH2Cl2 at room temperature in a 1:2 molar ratio afforded the neutral mono‐azirine complex [(η5‐C5Me5)RhCl2(az)]. The subsequent reaction of [(η5‐C5Me5)RhCl2]2 with six equivalents of az and 4 equivalents of AgOTf yielded the cationic tris‐azirine complex [(η5‐C5Me5)Rh(az)3](OTf)2. After purification, all complexes have been fully characterized. The molecular structures of the novel rhodium(III ) complexes exhibit slightly distorted octahedral coordination geometries around the metal atoms.  相似文献   

6.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

7.
Three novel 5‐R‐tetrazolato complexes (R = Me, Ph, 4‐Py), namely [Zn2(MeCN4)4(DMSO)2] ( 1 ), [Cu2(PhCN4)4(en)2] · 2DMSO ( 2 ), and [Cu(4‐PyCN4)2(DMSO)2] · 4DMSO ( 3 ), were isolated as unexpected products under attempts to prepare heterometallic tetrazolates using a direct synthesis strategy in the Cu0‐ZnO‐en‐RCN4H‐DMSO system (en = ethylenediamine). The prepared compounds were characterized by elemental, single‐crystal X‐ray, and thermal analyses, and IR spectroscopy. Variation of the 5‐substituent of the tetrazole ring causes different composition of complexes 1 – 3 and diverse coordination modes of 5‐R‐tetrazolato ligands. Complex 1 is a 3D coordination polymer due to N1, N4‐bridging of 5‐methyltetrazolato anions. Complex 2 , with en as a coligand, has a dinuclear structure with two copper atoms linked together by two 5‐phenyltetrazolato ligands by tetrazole N2, N3 bridges. Complex 3 represents a 2D coordination polymer, formed due to 5‐(4‐pyridyl)tetrazolato bridges between adjacent copper atoms (with the tetrazole and pyridine rings nitrogen atoms as coordination centers). DMSO molecules, included in all the compounds, are solvate and/or coordinated ones.  相似文献   

8.
Three copper(II) complexes, [Cu2(OAc)4L2] · 2CH3OH ( 1 ), [CuBr2L′2(CH3OH)] · CH3OH ( 2a ), and [CuBr2L′2(DMSO)] · 0.5CH3OH ( 2b ) {L = N‐(9‐anthracenyl)‐N′‐(3‐pyridyl)urea and L′ = N‐[10‐(10‐methoxy‐anthronyl)]‐N′‐(3‐pyridyl)urea} have been synthesized by the reaction of L with the corresponding copper(II) salts. Complex 1 shows a dinuclear structure with a conventional “paddlewheel” motif, in which four acetate units bridge the two CuII ions. In complexes 2a and 2b , the anthracenyl ligand L has been converted to an anthronyl derivative L′, and the central metal ion exhibits a distorted square pyramidal arrangement, with two pyridyl nitrogen atoms and two bromide ions defining the basal plane and the apical position is occupied by a solvent molecule (CH3OH in 2a and DMSO in 2b ).  相似文献   

9.
Three copper(II) coordination polymers, namely, {[CuL(H2O)2] · 4H2O}n( 1 ), [CuL(H2O)(DMF)]n( 2 ), and [CuL(2, 2′‐bipy)(DMSO)] · DMSO ( 3 ) [H2L = 2, 2′‐(4, 6‐dinitro‐1, 3‐phenyl‐enedioxy)diacetic acid] were synthesized in different solvents (H2O, DMF, and DMSO). X‐ray single crystal diffraction studies show that both complexes 1 and 3 belong to triclinic crystal system and P$\bar{1}$ space group and complex 2 belongs to the monoclinic crystal system and P21/c space group. In three complexes, all the central CuII ions coordinate with the ligand, forming a square pyramidal configuration. Both complexes 1 and 2 show similar 1D chain‐like structure and the chains are further connected by hydrogen bonds, forming 3D frameworks. Complex 3 exhibits a 0D structure due to the introduction of the ligand 2, 2′‐bipy. In addition, the luminescence properties of these complexes were investigated.  相似文献   

10.
Methoxy‐modified β‐diimines HL 1 and HL 2 reacted with Y(CH2SiMe3)3(THF)2 to afford the corresponding bis(alkyl)s [L1Y(CH2SiMe3)2] ( 1 ) and [L2Y(CH2SiMe3)2] ( 2 ), respectively. Amination of 1 with 2,6‐diisopropyl aniline gave the bis(amido) counterpart [L1Y{N(H)(2,6‐iPr2? C6H3)}2] ( 3 ), selectively. Treatment of Y(CH2SiMe3)3(THF)2 with methoxy‐modified anilido imine HL 3 yielded bis(alkyl) complex [L3Y(CH2SiMe3)2(THF)] ( 4 ) that sequentially reacted with 2,6‐diisopropyl aniline to give the bis(amido) analogue [L3Y{N(H)(2,6‐iPr2? C6H3)}2] ( 5 ). Complex 2 was “base‐free” monomer, in which the tetradentate β‐diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans‐arrangement of the amido ligands. In contrast, the two cis‐located alkyl species in complex 4 were endo and exo towards the O,N,N tridentate anilido‐imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring‐opening polymerization of L ‐LA at room temperature. The catalytic activity of the complexes and their “single‐site” or “double‐site” behavior depend on the ligand framework and the geometry of the alkyl (amido) species in the corresponding complexes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5662–5672, 2007  相似文献   

11.
Abstract. Two coordination polymers, namely, [Zn(bpe)0.5(Htbip)(tbip)0.5] · H2O ( 1 ) and [Cd(bpe)0.5(tbip)] ( 2 ) [H2tbip = 5‐tert‐butylisophthalic acid and bpe = 1, 2‐ bis(4‐pyridyl) ethane] were synthesized through hydrothermal reactions. Single‐crystal X‐ray diffraction analysis reveals that complex 1 presents a three‐dimensional (3D) six‐connected uninodal structure with the type of topology of svi‐x/I4/mcmIbam, whereas complex 2 holds a 2D 44sql layer structure. Moreover, the photoluminescent properties of the complexes at room temperature were investigated.  相似文献   

12.
A new oxamido‐bridged dicopper(II) complex formulated as [Cu2(ndpox)(bpy)(CH3OH)2]‐ (ClO4), where H3ndpox is N‐(2‐hydroxy‐5‐nitrophenyl)‐N′‐[3‐(diethylamino)propyl]oxamide; and bpy represents 2,2′‐bipyridine, was synthesized and structurally characterized using X‐ray single‐crystal diffraction and other methods. In the molecule, the endo‐ and the exo‐copper(II) ions bridged by the cis ‐ndpox3− ligand are in {N3O2} and {N2O3} square‐ pyramidal environments, respectively. There is a three‐dimensional hydrogen bonding network dominated by O‐H···O and C‐H···O interactions in the crystal. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static process. Cytotoxicity studies suggest that the complex displays selective cancer cell antiproliferative activity. The present investigation confirmed that the combined effects of both electron‐withdrawing and hydrophobic groups on the bridging ligand in the dicopper(II) complex systems can increase DNA/BSA‐binding ability and in vitro anticancer activity.  相似文献   

13.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

14.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

15.
It has been established that reductive complexation of functionalized benzofulvenes, which are readily prepared from commercially available indene and 2‐methylindene, with RhCl3 in ethanol affords the corresponding indenyl–rhodium(III) dichlorides bearing substituents at the 1‐ (H or CO2Et), 2‐ (H or Me), and 3‐ [CH2Ph or CH2(2‐MeOC6H4)] positions. The indenyl–rhodium(III) complexes bearing one ethoxycarbonyl group showed higher thermal stability and regioselectivity than our previously reported CpERhIII complex toward the oxidative [3+2] annulation of acetanilides with internal alkynes.  相似文献   

16.
Mercury(II) complexes with 4,4′‐bipyridine (4,4′‐bipy) ligand were synthesized and characterized by elemental analysis, and IR, 1H‐ and 13C‐NMR spectroscopy. The structures of the complexes [Hg3(4,4′‐bipy)2(CH3COO)2(SCN)4]n ( 1 ), [Hg5(4,4′‐bipy)5(SCN)10]n ( 2 ), [Hg2(4,4′‐bipy)2(CH3COO)2]n(ClO4)2n ( 3 ), and [Hg(4,4′‐bipy)I2]n ( 4 ) were determined by X‐ray crystallography. The single‐crystal X‐ray data show that 2 and 4 are one‐dimensional zigzag polymers with four‐coordinate Hg‐atoms, whereas 1 is a one‐dimensional helical chain with two four‐coordinate and one six‐coordinate Hg‐atom. Complex 3 is a two‐dimensional polymer with a five‐coordinate Hg‐atom. These results show the capacity of the Hg‐ion to act as a soft acid that is capable to form compounds with coordination numbers four, five, and six and consequently to produce different forms of coordination polymers, containing one‐ and two‐dimensional networks.  相似文献   

17.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

18.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

19.
张曙光  冯云龙 《中国化学》2009,27(5):877-881
四唑酸(–CN4H)与羧酸(–COOH)具有相似的酸性。对苯酚四唑硫酮(H2L)可以作为单齿(–S或–N)或双齿(–N, N或–N, S)配体与金属离子配位形成配位化合物。合成了4个以H2L为配体的金属(II)配合物:Co(HL)2(Py)2(H2O)2 (1), [Mn(HL)2(H2O)4]·2H2O (2), Mn(HL)2(Phen)2 (3), and [Zn(HL)2(Phen)2]·0.5H2O·1.5CH3OH (4),并用X−射线单晶衍射法测定了晶体结构。晶体结构分析表明,在这些配合物中所有的中心金属原子均呈现六配位的八面体构型。在配合物1和2中,HL–配体以氧原子与中心金属原子配位,而在配合物3和4中HL–配体则以硫原子与中心金属原子配位。  相似文献   

20.
Four isostructural [Ni2Ln2(CH3CO2)3(HL)4(H2O)2]3+(Ln3+=Dy ( 1 ), Tb ( 2 ), Ho ( 3 ) or Lu ( 4 )) complexes and a dinuclear [NiGd(HL)2(NO3)3] ( 5 ) complex are reported (where HL=2‐methoxy‐6‐[(E)‐2′‐hydroxymethyl‐phenyliminomethyl]‐phenolate). For compounds 1 – 3 and 5 , the Ni2+ ions are ferromagnetically coupled to the respective lanthanide ions. The ferromagnetic coupling in 1 suppresses the quantum tunnelling of magnetisation (QTM), resulting in a rare zero dc field Ni–Dy single‐molecule magnet, with an anisotropy barrier Ueff of 19 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号